Ann M Middlebrook

List of Publications by Citations

Source: https://exaly.com/author-pdf/3824727/ann-m-middlebrook-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15,767 125 125 55 h-index g-index citations papers 17,601 5.63 155 7.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
125	Evolution of organic aerosols in the atmosphere. <i>Science</i> , 2009 , 326, 1525-9	33.3	2767
124	Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. <i>Geophysical Research Letters</i> , 2007 , 34, n/a-n/a	4.9	1497
123	Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. <i>Mass Spectrometry Reviews</i> , 2007 , 26, 185-222	11	1443
122	A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. <i>Journal of Aerosol Science</i> , 2004 , 35, 909-922	4.3	615
121	Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. <i>Journal of Geophysical Research</i> , 2005 , 110,		590
120	Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data. <i>Aerosol Science and Technology</i> , 2012 , 46, 258-271	3.4	578
119	A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. <i>Nature</i> , 2010 , 464, 271-4	50.4	471
118	Single-particle mass spectrometry of tropospheric aerosol particles. <i>Journal of Geophysical Research</i> , 2006 , 111,		389
117	Brown carbon and internal mixing in biomass burning particles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 14802-7	11.5	324
116	Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. <i>Nature</i> , 1998 , 392, 62-65	50.4	312
115	Collection Efficiencies in an Aerodyne Aerosol Mass Spectrometer as a Function of Particle Phase for Laboratory Generated Aerosols. <i>Aerosol Science and Technology</i> , 2008 , 42, 884-898	3.4	302
114	Observations of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE 1). <i>Journal of Geophysical Research</i> , 1998 , 103, 16475-16483		276
113	Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. <i>Geophysical Research Letters</i> , 2009 , 36, n/a-n/a	4.9	249
112	Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2423-2453	6.8	217
111	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12673-12696	6.8	199
110	Transport of Asian ozone pollution into surface air over the western United States in spring. Journal of Geophysical Research, 2012, 117, n/a-n/a		196
109	Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. <i>Journal of Geophysical Research</i> , 2009 , 114,		196

108	Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	163
107	A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		159
106	Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. <i>Journal of Geophysical Research</i> , 2008 , 113,		158
105	An important contribution to springtime Arctic aerosol from biomass burning in Russia. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	155
104	Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates. <i>Journal of Geophysical Research</i> , 1994 , 99, 25631		148
103	Organic aerosol formation downwind from the Deepwater Horizon oil spill. <i>Science</i> , 2011 , 331, 1295-9	33.3	138
102	Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 1657-1732	6.8	115
101	Characterization of model polar stratospheric cloud films using Fourier transform infrared spectroscopy and temperature programmed desorption. <i>Journal of Geophysical Research</i> , 1992 , 97, 8065	5	114
100	Nighttime removal of NOx in the summer marine boundary layer. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	112
99	Direct observations of N2O5 reactivity on ambient aerosol particles. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	109
98	Design and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an Aerodynamic Aerosol Lens. <i>Aerosol Science and Technology</i> , 2008 , 42, 465-471	3.4	109
97	Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations. <i>Journal of Geophysical Research</i> , 2009 , 114,		104
96	Fourier transform infrared studies of model polar stratospheric cloud surfaces: Growth and evaporation of ice and nitric acid/ice. <i>Journal of Geophysical Research</i> , 1990 , 95, 22423		100
95	Ammonia sources in the California South Coast Air Basin and their impact on ammonium nitrate formation. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	97
94	Chemical components of single particles measured with Particle Analysis by Laser Mass Spectrometry (PALMS) during the Atlanta SuperSite Project: Focus on organic/sulfate, lead, soot, and mineral particles. <i>Journal of Geophysical Research</i> , 2002 , 107, AAC 1-1		96
93	Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality. <i>Environmental Science & Environmental Science & Envir</i>	10.3	95
92	Understanding the role of the ground surface in HONO vertical structure: High resolution vertical profiles during NACHTT-11. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 10,155-10,171	4.4	91
91	Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	91

90	Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes. <i>Journal of Geophysical Research</i> , 1993 , 98, 20473		90
89	Chlorine activation within urban or power plant plumes: Vertically resolved ClNO2 and Cl2 measurements from a tall tower in a polluted continental setting. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 8702-8715	4.4	81
88	Airborne observations of ammonia and ammonium nitrate formation over Houston, Texas. <i>Journal of Geophysical Research</i> , 2010 , 115,		80
87	Kinetics of ethane oxidation on vanadium oxide. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 5029-5033		79
86	A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project. <i>Journal of Geophysical Research</i> , 2003 , 108,		78
85	Brown carbon absorption linked to organic mass tracers in biomass burning particles. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 2415-2422	6.8	75
84	Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. <i>Journal of Geophysical Research</i> , 2011 , 116,		75
83	Hygroscopicity and composition of Alaskan Arctic CCN during April 2008. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11807-11825	6.8	73
82	N2O5 uptake coefficients and nocturnal NO2 removal rates determined from ambient wintertime measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 9331-9350	4.4	72
81	Aerosol optical properties in the southeastern United States in summer Part 1: Hygroscopic growth. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 4987-5007	6.8	71
80	In situ single-particle characterization at Cape Grim. <i>Journal of Geophysical Research</i> , 1998 , 103, 16485-1	16491	71
79	Cluster Analysis of Data from the Particle Analysis by Laser Mass Spectrometry (PALMS) Instrument. <i>Aerosol Science and Technology</i> , 2003 , 37, 382-391	3.4	69
78	Thresholds for Laser-Induced Ion Formation from Aerosols in a Vacuum Using Ultraviolet and Vacuum-Ultraviolet Laser Wavelengths. <i>Aerosol Science and Technology</i> , 1997 , 26, 544-559	3.4	67
77	Nocturnal odd-oxygen budget and its implications for ozone loss in the lower troposphere. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	66
76	Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7561-7582	6.8	60
75	Air quality implications of the Deepwater Horizon oil spill. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 20280-5	11.5	59
74	Hygroscopicity and composition of California CCN during summer 2010. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		59
73	Nitrate and oxidized organic ions in single particle mass spectra during the 1999 Atlanta Supersite Project. <i>Journal of Geophysical Research</i> , 2003 , 108, SOS 5-1		58

(2003-2013)

72	air chemistry field study in the front range urban corridor of Colorado. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 8067-8085	4.4	57	
71	Bromine, iodine, and chlorine in single aerosol particles at Cape Grim. <i>Geophysical Research Letters</i> , 1997 , 24, 3197-3200	4.9	55	
70	Dominance of organic aerosols in the marine boundary layer over the Gulf of Maine during NEAQS 2002 and their role in aerosol light scattering. <i>Journal of Geophysical Research</i> , 2005 , 110,		55	
69	Fourier transform infrared studies of the interaction of HCl with model polar stratospheric cloud films. <i>Journal of Geophysical Research</i> , 1993 , 98, 10563		55	
68	Distribution of lead in single atmospheric particles. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 3195-32	2160 8	51	
67	Real refractive indices of infrared-characterized nitric-acid/ice films: Implications for optical measurements of polar stratospheric clouds. <i>Journal of Geophysical Research</i> , 1994 , 99, 25655		51	
66	Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 3063-3093	4	50	
65	Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10013-10060	6.8	49	
64	In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC⁴RS: observations of a modest aerosol enhancement aloft. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7085-7102	6.8	46	
63	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NOx and VOC Control as Mitigation Strategies. <i>Geophysical Research Letters</i> , 2019 , 46, 4971-4979	4.9	45	
62	On the Purity of Laboratory-Generated Sulfuric Acid Droplets and Ambient Particles Studied by Laser Mass Spectrometry. <i>Aerosol Science and Technology</i> , 1997 , 27, 293-307	3.4	45	
61	Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 11317-11337	6.8	44	
60	An evaluation of global organic aerosol schemes using airborne observations. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 2637-2665	6.8	44	
59	Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia-rich urban environment. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		43	
58	Laboratory studies of the formation of polar stratospheric clouds: Nitric acid condensation on thin sulfuric acid films. <i>Journal of Geophysical Research</i> , 1995 , 100, 20969		43	
57	Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 6641-6646	11.5	42	
56	Sources of particulate matter in the northeastern United States in summer: 2. Evolution of chemical and microphysical properties. <i>Journal of Geophysical Research</i> , 2008 , 113,		41	
55	Overview of the 1999 Atlanta Supersite Project. <i>Journal of Geophysical Research</i> , 2003 , 108,		40	

54	Enhanced formation of isoprene-derived organic aerosol in sulfur-rich power plant plumes during Southeast Nexus. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 11,137-11,153	4.4	38
53	Mass spectral analysis of organic aerosol formed downwind of the Deepwater Horizon oil spill: field studies and laboratory confirmations. <i>Environmental Science & Environmental & Env</i>	10.3	38
52	Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 9849-9861	4.4	38
51	Design and Performance of a Pumped Counterflow Virtual Impactor. <i>Aerosol Science and Technology</i> , 2006 , 40, 969-976	3.4	37
50	Growth of nitric acid hydrates on thin sulfuric acid films. <i>Geophysical Research Letters</i> , 1994 , 21, 867-870	4.9	37
49	Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 5649-5666	6.8	36
48	Aerosol optical properties in the southeastern United States in summer [Part[2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 5009-5019	6.8	33
47	Comment on The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer (Aerosol Science and Technology, 2016, 50, i-xv	3.4	33
46	New insights into atmospheric sources and sinks of isocyanic acid, HNCO, from recent urban and regional observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 1060-1072	4.4	31
45	Secondary organic aerosol (SOA) yields from NO₃ radical + isoprene based on nighttime aircraft power plant plume transects. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 11663-	19682	30
44	CCN spectra, hygroscopicity, and droplet activation kinetics of secondary organic aerosol resulting from the 2010 Deepwater Horizon oil spill. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	30
43	A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 6209-6239	4	30
42	Crystallization Kinetics of HNO3/H2O Films Representative of Polar Stratospheric Clouds. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 2112-2119	2.8	29
41	Evaluating N2O5 heterogeneous hydrolysis parameterizations for CalNex 2010. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 5051-5070	4.4	26
40	Evaporation studies of model polar stratospheric cloud films. <i>Geophysical Research Letters</i> , 1996 , 23, 2145-2148	4.9	26
39	Formation of model polar stratospheric cloud films. <i>Geophysical Research Letters</i> , 1992 , 19, 2417-2420	4.9	26
38	Characteristics of black carbon aerosol from a surface oil burn during the Deepwater Horizon oil spill. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	25
37	Spectroscopic studies of model polar stratospheric cloud films. <i>Spectrochimica Acta Part A:</i> Molecular Spectroscopy, 1992 , 48, 1303-1313		24

(2021-2019)

36	Evidence in biomass burning smoke for a light-absorbing aerosol with properties intermediate between brown and black carbon. <i>Aerosol Science and Technology</i> , 2019 , 53, 976-989	3.4	22	
35	Airborne and ground-based observations of ammonium-nitrate-dominated aerosols in a shallow boundary layer during intense winter pollution episodes in northern Utah. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 17259-17276	6.8	18	
34	On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 9287-9308	6.8	17	
33	Vertically resolved chemical characteristics and sources of submicron aerosols measured on a Tall Tower in a suburban area near Denver, Colorado in winter. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 13,591-13,605	4.4	15	
32	Airborne measurements of the atmospheric emissions from a fuel ethanol refinery. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 4385-4397	4.4	14	
31	Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 2749-2768	4	13	
30	Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 1777-1803	4.4	13	
29	Formation and growth of organic aerosols downwind of the Deepwater Horizon oil spill. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	13	
28	Modeling the diurnal variability of agricultural ammonia in Bakersfield, California, during the CalNex campaign. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2721-2739	6.8	11	
27	Studies of interfacial composition of TiN films formed by plasma-assisted chemical vapor deposition using an in situ scratching device. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1986 , 4, 2797-2800	2.9	11	
26	Wintertime spatial distribution of ammonia and its emission sources in the Great Salt Lake region. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 15691-15709	6.8	11	
25	Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic climate (ARCPAC) project		9	
24	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	9	
23	Role of Criegee Intermediates in Secondary Sulfate Aerosol Formation in Nocturnal Power Plant Plumes in the Southeast US. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 748-759	3.2	8	
22	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16293-16317	6.8	8	
21	Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 3801-3820	4	7	
20	Los Angeles Basin airborne organic aerosol characterization during CalNex. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 11,453-11,467	4.4	7	
19	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. <i>Communications Earth & Environment</i> , 2021 , 2,	6.1	7	

18	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model		6
17	Aerosol optical properties in the southeastern United States in summer IPart 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters		6
16	Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013		6
15	Aerosol optical properties in the southeastern United States in summer IPart 1: Hygroscopic growth		5
14	An evaluation of global organic aerosol schemes using airborne observations 2019,		4
13	Wintertime Spatial Distribution of Ammonia and its Emission Sources in the Great Salt Lake Region 2019 ,		3
12	Drivers of cloud droplet number variability in the summertime in the southeastern United States. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 12163-12176	6.8	3
11	A new method to quantify mineral dust and other aerosol species from aircraft platforms using single particle mass spectrometry		3
10	The role of coarse aerosol particles as a sink of HNO₃ in wintertime pollution events in the Salt Lake Valley. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 8111-8126	6.8	3
9	Coupled Air Quality and Boundary-Layer Meteorology in Western U.S. Basins during Winter: Design and Rationale for a Comprehensive Study. <i>Bulletin of the American Meteorological Society</i> , 2021 , 1-94	6.1	3
8	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	2
7	Distribution of lead in single atmospheric particles		2
6	Complexity in the evolution, composition, and spectroscopy of brown carbon in aircraft measurements of wildfire plumes. <i>Geophysical Research Letters</i> ,	4.9	2
5	Modeling the Diurnal Variability of Agricultural Ammonia in Bakersfield, California during CalNex 2016 ,		1
4	Limited impact of sulfate-driven chemistry on black carbon aerosol aging in power plant plumes. <i>AIMS Environmental Science</i> , 2018 , 5, 195-215	1.9	1
3	In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC ⁴ RS: observations of a modest aerosol enhancement aloft		1
2	Complex refractive indices in the ultraviolet and visible spectral region for highly absorbing non-spherical biomass burning aerosol. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 7235-7252	6.8	1
1	Spectroscopic Studies of PSCs 1994 , 329-349		