Gabriele Giuli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3824664/publications.pdf

Version: 2024-02-01

218677 302126 1,805 77 26 39 h-index citations g-index papers 77 77 77 2530 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tektite glasses from Belize, Central America: Petrography, geochemistry, and search for a possible meteoritic component. Geochimica Et Cosmochimica Acta, 2022, , .	3.9	3
2	Ultrafast structural response of shockâ€compressed plagioclase. Meteoritics and Planetary Science, 2022, 57, 635-643.	1.6	3
3	V K-Edge XANES Full Multiple Scattering Study of V-Bearing Phosphate Glasses. Springer Proceedings in Physics, 2021, , 219-231.	0.2	1
4	Effect of Applying a Carbon Coating on the Crystal Structure and De-/Lithiation Mechanism of Mn-Doped ZnO Lithium-Ion Anodes. Journal of the Electrochemical Society, 2021, 168, 030503.	2.9	8
5	Impact of Crystal Density on the Electrochemical Behavior of Lithium-Ion Anode Materials: Exemplary Investigation of (Fe-Doped) GeO ₂ . Journal of Physical Chemistry C, 2021, 125, 8947-8958.	3.1	5
6	Spontaneous shape transition of MnxGe1 \hat{a}^{x} x islands to long nanowires. Beilstein Journal of Nanotechnology, 2021, 12, 366-374.	2.8	1
7	Synthesis of Bioactive Silver Nanoparticles by a Pseudomonas Strain Associated with the Antarctic Psychrophilic Protozoon Euplotes focardii. Marine Drugs, 2020, 18, 38.	4.6	89
8	Introducing Highly Redoxâ€Active Atomic Centers into Insertionâ€Type Electrodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000783.	19.5	30
9	Horizontal gene transfer and silver nanoparticles production in a new Marinomonas strain isolated from the Antarctic psychrophilic ciliate Euplotes focardii. Scientific Reports, 2020, 10, 10218.	3.3	22
10	New IR spectroscopic data for determination of water abundances in hydrous pantelleritic glasses. American Mineralogist, 2020, 105, 1060-1068.	1.9	5
11	Lithiumâ€lon Batteries: Introducing Highly Redoxâ€Active Atomic Centers into Insertionâ€Type Electrodes for Lithiumâ€lon Batteries (Adv. Energy Mater. 25/2020). Advanced Energy Materials, 2020, 10, 2070112.	19.5	1
12	Spectroscopic study of volcanic ashes. Journal of Hazardous Materials, 2020, 400, 123213.	12.4	4
13	Electrospun Carbon/Cu _{<i>x</i>} O Nanocomposite material as Sustainable and High Performance Anode for Lithiumâ€ion Batteries. ChemistryOpen, 2019, 8, 781-787.	1.9	3
14	Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia. Geosciences (Switzerland), 2019, 9, 225.	2.2	12
15	Meteoroid atmospheric entry investigated with plasma flow experiments: Petrography and geochemistry of the recovered material. Icarus, 2019, 331, 170-178.	2.5	6
16	Electrochemical and structural investigation of transition metal doped V2O5 sono-aerogel cathodes for lithium metal batteries. Solid State Ionics, 2018, 319, 46-52.	2.7	16
17	Conversion/alloying lithium-ion anodes – enhancing the energy density by transition metal doping. Sustainable Energy and Fuels, 2018, 2, 2601-2608.	4.9	41
18	Structural and Electrochemical Characterization of Zn1â^'xFexOâ€"Effect of Aliovalent Doping on the Li+ Storage Mechanism. Materials, 2018, 11, 49.	2.9	25

#	Article	IF	CITATIONS
19	A Novel Synthesis Routine for Woodwardite and Its Affinity towards Light (La, Ce, Nd) and Heavy (Gd) Tj ETQq1	1 0 ₂ 784314	rgBT /Over
20	The effect of oxygen fugacity and Na/(Na+K) ratio on iron speciation in pantelleritic glasses. Journal of Non-Crystalline Solids, 2017, 478, 65-74.	3.1	10
21	Tektites and microtektites iron oxidation state and water content. Rendiconti Lincei, 2017, 28, 615-621.	2.2	4
22	Viscosity of pantelleritic and alkali-silicate melts: Effect of Fe redox state and Na/(Na + K) ratio. Chemical Geology, 2016, 442, 73-82.	3.3	24
23	Fe local structure in Pt-free nitrogen-modified carbon based electrocatalysts: XAFS study. Journal of Physics: Conference Series, 2016, 712, 012131.	0.4	2
24	Vanadium <i>K</i> -edge XANES in vanadium-bearing model compounds: a full multiple scattering study. Journal of Synchrotron Radiation, 2016, 23, 947-952.	2.4	13
25	Rotating disk electrode study of Pt/Cs3HPMo11VO40 composite catalysts for performing and durable PEM fuel cells. International Journal of Hydrogen Energy, 2016, 41, 11163-11173.	7.1	14
26	Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms. Lithos, 2015, 216-217, 93-105.	1.4	39
27	Synthesis and electrochemical characterization of high rate capability Li3V2(PO4)3/C prepared by using poly(acrylic acid) and d-(+)-glucose as carbon sources. Journal of Power Sources, 2015, 275, 792-798.	7.8	27
28	Synthesis and characterization of Zn-doped LiFePO4 cathode materials for Li-ion battery. Materials Chemistry and Physics, 2015, 155, 191-204.	4.0	14
29	The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses. American Mineralogist, 2015, 100, 1610-1619.	1.9	30
30	Competition between two redox states in silicate melts: An in-situ experiment at the Fe K-edge and Eu L3-edge. American Mineralogist, 2015, 100, 1013-1016.	1.9	17
31	High rate capability Li3V2¬xNix(PO4)3/C (x = 0, 0.05, and 0.1) cathodes for Li-ion asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11807-11816.	10.3	34
32	Insights into the Effect of Iron and Cobalt Doping on the Structure of Nanosized ZnO. Inorganic Chemistry, 2015, 54, 9393-9400.	4.0	38
33	Exploring the Low Voltage Behavior of V ₂ O ₅ Aerogel as Intercalation Host for Sodium Ion Battery. Journal of the Electrochemical Society, 2015, 162, A2723-A2728.	2.9	51
34	Quantitative Study of Porosity and Pore Features in Moldavites by Means of X-ray Micro-CT. Materials, 2014, 7, 3319-3336.	2.9	6
35	Australasian microtektites from Antarctica: <scp>XAS</scp> determination of the Fe oxidation state. Meteoritics and Planetary Science, 2014, 49, 696-705.	1.6	10
36	Structural and Electrochemical Characterization of Vanadium-Doped LiFePO4Cathodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A940-A949.	2.9	20

#	Article	IF	CITATIONS
37	XAS investigation of rare earth elements in sodium disilicate glasses. Journal of Non-Crystalline Solids, 2013, 362, 162-168.	3.1	19
38	North American microtektites are more oxidized than tektites. American Mineralogist, 2013, 98, 1930-1937.	1.9	11
39	Europium oxidation state and local structure in silicate glasses. American Mineralogist, 2012, 97, 918-929.	1.9	26
40	Dioxygen Oxidation Cu(II) â†' Cu(III) in the Copper Complex of <i>cyclo</i> (Lys- <scp>d</scp> His-βAla-His): A Case Study by EXAFS and XANES Approach. Inorganic Chemistry, 2012, 51, 7969-7976.	4.0	14
41	The [4]Fe3+-O distance in synthetic kimzeyite garnet, Ca3Zr2[Fe2SiO12]. European Journal of Mineralogy, 2012, 24, 783-790.	1.3	14
42	Effect of alkalis on the Fe oxidation state and local environment in peralkaline rhyolitic glasses. American Mineralogist, 2012, 97, 468-475.	1.9	55
43	Structural study of LiFePO4–LiNiPO4 solid solutions. Journal of Power Sources, 2012, 213, 287-295.	7.8	17
44	XAS determination of the Fe local environment and oxidation state in phonolite glasses. American Mineralogist, 2011, 96, 631-636.	1.9	56
45	Rotating disc electrode study of Pt-Co-Cs2.5PW12O40 composite electrodes toward oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36, 8098-8102.	7.1	18
46	Iron reduction in silicate glass produced during the 1945 nuclear test at the Trinity site (Alamogordo,) Tj ETQq0 0	0 rgBT /O	verlock 10 T
47	Iron oxidation state and local structure in North American tektites. , 2010, , .		5
48	Europium structural environment in a sodium disilicate glass by XAS. Journal of Non-Crystalline Solids, 2010, 356, 1749-1753.	3.1	18
49	Sulfur-Metal Orbital Hybridization in Sulfur-Bearing Compounds Studied by X-ray Emission Spectroscopy. Inorganic Chemistry, 2010, 49, 6468-6473.	4.0	56
50		4.0 6.5	93
	Spectroscopy. Inorganic Chemistry, 2010, 49, 6468-6473. Electronic Structure of Sulfur Studied by X-ray Absorption and Emission Spectroscopy. Analytical Chemistry, 2009, 81, 6516-6525. A high-temperature furnace for (i) in situ (i) synchrotron X-ray spectroscopy under controlled atmospheric conditions. Journal of Synchrotron Radiation, 2008, 15, 489-494. Orbital hybridization and spin polarization in the resonant (mm): math		
50	Electronic Structure of Sulfur Studied by X-ray Absorption and Emission Spectroscopy. Analytical Chemistry, 2009, 81, 6516-6525. A high-temperature furnace for (i>in situ (i) synchrotron X-ray spectroscopy under controlled of the controlled and spin polarization in the resonant (mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> (mml:mrow> (mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> (mml:mrow> (mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> (mml:mrow> (mml:mi>) (mml:mi> (mml:mtext) (mml:mtext) (mml:msub) (mml:mi)	6.5	93
50	Electronic Structure of Sulfur Studied by X-ray Absorption and Emission Spectroscopy. Analytical Chemistry, 2009, 81, 6516-6525. A high-temperature furnace for <i>in situ </i> > A high-temperature furnace for <i>in situ </i> In situ In situ <td>6.5 2.4 tations</td> <td>93</td>	6.5 2.4 tations	93

#	Article	IF	CITATIONS
55	Spin-Sensitive and Angular Dependent Detection of Resonant Excitations at the K Absorption Pre-Edge of \hat{l}_{\pm} -Fe2O3. AIP Conference Proceedings, 2007, , .	0.4	1
56	The Structural Role of Ag in Galena PbS. A XANES Study. Physica Scripta, 2005, , 387.	2.5	6
57	Iron oxidation state in impact glass from the K/T boundary at Beloc, Haiti, by high-resolution XANES spectroscopy. Meteoritics and Planetary Science, 2005, 40, 1575-1580.	1.6	35
58	V oxidation state and coordination number in silicate glasses by XAS. American Mineralogist, 2004, 89, 1640-1646.	1.9	74
59	Iron oxidation state in the Feâ€rich layer and silica matrix of Libyan Desert Glass: A highâ€resolution XANES study. Meteoritics and Planetary Science, 2003, 38, 1181-1186.	1.6	60
60	Santabarbaraite: a new amorphous phosphate mineral. European Journal of Mineralogy, 2003, 15, 185-192.	1.3	43
61	Fe and Mg local environment in the synthetic enstatite-ferrosilite join: an experimental and theoretical XANES and XRD study. European Journal of Mineralogy, 2002, 14, 429-436.	1.3	10
62	Local and average Fe distribution in trioctahedral micas: Analysis of Fe K-edge XANES spectra in the phlogopite-annite and phlogopite-tetra-ferriphlogopite joins on the basis of single-crystal XRD refinements. European Journal of Mineralogy, 2002, 14, 1075-1085.	1.3	19
63	Iron local structure in tektites and impact glasses by extended X-ray absorption fine structure and high-resolution X-ray absorption near-edge structure spectroscopy. Geochimica Et Cosmochimica Acta, 2002, 66, 4347-4353.	3.9	83
64	A 29Si–27Al magic-angle spinning NMR study of natural silica glass from the Libyan Desert (Egypt). Journal of Non-Crystalline Solids, 2001, 279, 88-92.	3.1	8
65	Experimental and theoretical XANES study of the effects of Fe–Mg solid solution in the enstatite–ferrosilite series. Journal of Synchrotron Radiation, 2001, 8, 966-968.	2.4	1
66	Experimental and theoretical XANES and EXAFS study of tetra-ferriphlogopite. European Journal of Mineralogy, 2001, 13, 1099-1108.	1.3	28
67	Aluminium coordination in tektites: A XANES study. American Mineralogist, 2000, 85, 1172-1174.	1.9	18
68	Ion beam study of a possible extraterrestrial body signature in Libyan desert glass. Nuclear Instruments & Methods in Physics Research B, 2000, 170, 187-192.	1.4	7
69	Reduction and Sorption of Chromium by Fe(II)-Bearing Phyllosilicates: Chemical Treatments and X-Ray Absorption Spectroscopy (XAS) Studies. Clays and Clay Minerals, 2000, 48, 272-281.	1.3	54
70	Effect of aluminum on Ti-coordination in silicate glasses: A XANES study. American Mineralogist, 2000, 85, 108-117.	1.9	56
71	Nickel site distribution and clustering in synthetic double-chain silicates by experimental and theoretical XANES spectroscopy. Physical Review B, 2000, 62, 5473-5477.	3.2	8
72	Al-Fe disorder in synthetic epidotes; a single-crystal X-ray diffraction study. American Mineralogist, 1999, 84, 933-936.	1.9	37

#	Article	IF	CITATION
73	Al coordination and local structure in minerals: XAFS determinations and multiple-scattering calculations for K-feldspars. Europhysics Letters, 1997, 38, 465-470.	2.0	12
74	Octahedral versus tetrahedral coordination of Al in synthetic micas determined by XANES. American Mineralogist, 1997, 82, 497-502.	1.9	35
75	An optical study of silicate glass containing and ions. Journal of Physics Condensed Matter, 1996, 8, 9059-9069.	1.8	41
76	Singolarità cristallochimiche di melaniti italiane messe in evidenza dalla spettroscopia d'assorbimento dei raggi X in luce di sincrotrone alia soglia K dell'alluminio. Rendiconti Lincei, 1996, 7, 251-264.	2.2	1
77	Effects of higher-coordination shells in garnets detected by x-ray-absorption spectroscopy at the AlKedge. Physical Review B, 1996, 54, 2976-2979.	3.2	27