Gabriele Giuli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3824664/publications.pdf

Version: 2024-02-01

218677 302126 1,805 77 26 39 h-index citations g-index papers 77 77 77 2530 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electronic Structure of Sulfur Studied by X-ray Absorption and Emission Spectroscopy. Analytical Chemistry, 2009, 81, 6516-6525.	6.5	93
2	Synthesis of Bioactive Silver Nanoparticles by a Pseudomonas Strain Associated with the Antarctic Psychrophilic Protozoon Euplotes focardii. Marine Drugs, 2020, 18, 38.	4.6	89
3	Iron local structure in tektites and impact glasses by extended X-ray absorption fine structure and high-resolution X-ray absorption near-edge structure spectroscopy. Geochimica Et Cosmochimica Acta, 2002, 66, 4347-4353.	3.9	83
4	V oxidation state and coordination number in silicate glasses by XAS. American Mineralogist, 2004, 89, 1640-1646.	1.9	74
5	Iron oxidation state in the Feâ€rich layer and silica matrix of Libyan Desert Glass: A highâ€resolution XANES study. Meteoritics and Planetary Science, 2003, 38, 1181-1186.	1.6	60
6	Effect of aluminum on Ti-coordination in silicate glasses: A XANES study. American Mineralogist, 2000, 85, 108-117.	1.9	56
7	Sulfur-Metal Orbital Hybridization in Sulfur-Bearing Compounds Studied by X-ray Emission Spectroscopy. Inorganic Chemistry, 2010, 49, 6468-6473.	4.0	56
8	XAS determination of the Fe local environment and oxidation state in phonolite glasses. American Mineralogist, 2011, 96, 631-636.	1.9	56
9	Effect of alkalis on the Fe oxidation state and local environment in peralkaline rhyolitic glasses. American Mineralogist, 2012, 97, 468-475.	1.9	55
10	Reduction and Sorption of Chromium by Fe(II)-Bearing Phyllosilicates: Chemical Treatments and X-Ray Absorption Spectroscopy (XAS) Studies. Clays and Clay Minerals, 2000, 48, 272-281.	1.3	54
11	xmins:mmi="nttp://www.w3.org/1998/Niath/Ni	tations 3.2	54
12	Exploring the Low Voltage Behavior of V ₂ O ₅ Aerogel as Intercalation Host for Sodium Ion Battery. Journal of the Electrochemical Society, 2015, 162, A2723-A2728.	2.9	51
13	Santabarbaraite: a new amorphous phosphate mineral. European Journal of Mineralogy, 2003, 15, 185-192.	1.3	43
14	An optical study of silicate glass containing and ions. Journal of Physics Condensed Matter, 1996, 8, 9059-9069.	1.8	41
15	Conversion/alloying lithium-ion anodes – enhancing the energy density by transition metal doping. Sustainable Energy and Fuels, 2018, 2, 2601-2608.	4.9	41
16	Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms. Lithos, 2015, 216-217, 93-105.	1.4	39
17	Insights into the Effect of Iron and Cobalt Doping on the Structure of Nanosized ZnO. Inorganic Chemistry, 2015, 54, 9393-9400.	4.0	38
18	Al-Fe disorder in synthetic epidotes; a single-crystal X-ray diffraction study. American Mineralogist, 1999, 84, 933-936.	1.9	37

#	Article	lF	CITATIONS
19	Octahedral versus tetrahedral coordination of Al in synthetic micas determined by XANES. American Mineralogist, 1997, 82, 497-502.	1.9	35
20	Iron oxidation state in impact glass from the K/T boundary at Beloc, Haiti, by high-resolution XANES spectroscopy. Meteoritics and Planetary Science, 2005, 40, 1575-1580.	1.6	35
21	High rate capability Li3V2 \hat{A} ¬xNix(PO4)3/C (x = 0, 0.05, and 0.1) cathodes for Li-ion asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11807-11816.	10.3	34
22	The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses. American Mineralogist, 2015, 100, 1610-1619.	1.9	30
23	Introducing Highly Redoxâ€Active Atomic Centers into Insertionâ€Type Electrodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000783.	19.5	30
24	Experimental and theoretical XANES and EXAFS study of tetra-ferriphlogopite. European Journal of Mineralogy, 2001, 13, 1099-1108.	1.3	28
25	Effects of higher-coordination shells in garnets detected by x-ray-absorption spectroscopy at the AlKedge. Physical Review B, 1996, 54, 2976-2979.	3.2	27
26	Synthesis and electrochemical characterization of high rate capability Li3V2(PO4)3/C prepared by using poly(acrylic acid) and d-(+)-glucose as carbon sources. Journal of Power Sources, 2015, 275, 792-798.	7.8	27
27	Europium oxidation state and local structure in silicate glasses. American Mineralogist, 2012, 97, 918-929.	1.9	26
28	Structural and Electrochemical Characterization of Zn1â^'xFexOâ€"Effect of Aliovalent Doping on the Li+ Storage Mechanism. Materials, 2018, 11, 49.	2.9	25
29	Viscosity of pantelleritic and alkali-silicate melts: Effect of Fe redox state and Na/(Na + K) ratio. Chemical Geology, 2016, 442, 73-82.	3.3	24
30	Yellow impact glass from the K/T boundary at Beloc (Haiti): XANES determination of the Fe oxidation state and implications for formation conditions. Meteoritics and Planetary Science, 2008, 43, 981-986.	1.6	23
31	Horizontal gene transfer and silver nanoparticles production in a new Marinomonas strain isolated from the Antarctic psychrophilic ciliate Euplotes focardii. Scientific Reports, 2020, 10, 10218.	3.3	22
32	Structural and Electrochemical Characterization of Vanadium-Doped LiFePO4Cathodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A940-A949.	2.9	20
33	Local and average Fe distribution in trioctahedral micas: Analysis of Fe K-edge XANES spectra in the phlogopite-annite and phlogopite-tetra-ferriphlogopite joins on the basis of single-crystal XRD refinements. European Journal of Mineralogy, 2002, 14, 1075-1085.	1.3	19
34	XAS investigation of rare earth elements in sodium disilicate glasses. Journal of Non-Crystalline Solids, 2013, 362, 162-168.	3.1	19
35	Aluminium coordination in tektites: A XANES study. American Mineralogist, 2000, 85, 1172-1174.	1.9	18
36	Europium structural environment in a sodium disilicate glass by XAS. Journal of Non-Crystalline Solids, 2010, 356, 1749-1753.	3.1	18

#	Article	IF	Citations
37	Rotating disc electrode study of Pt-Co-Cs2.5PW12O40 composite electrodes toward oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36, 8098-8102.	7.1	18
38	Structural study of LiFePO4–LiNiPO4 solid solutions. Journal of Power Sources, 2012, 213, 287-295.	7.8	17
39	Competition between two redox states in silicate melts: An in-situ experiment at the Fe K-edge and Eu L3-edge. American Mineralogist, 2015, 100, 1013-1016.	1.9	17
40	Electrochemical and structural investigation of transition metal doped V2O5 sono-aerogel cathodes for lithium metal batteries. Solid State Ionics, 2018, 319, 46-52.	2.7	16
41	Dioxygen Oxidation Cu(II) â†' Cu(III) in the Copper Complex of <i>cyclo</i> (Lys- <scp>d</scp> His-βAla-His): A Case Study by EXAFS and XANES Approach. Inorganic Chemistry, 2012, 51, 7969-7976.	4.0	14
42	The [4]Fe3+-O distance in synthetic kimzeyite garnet, Ca3Zr2[Fe2SiO12]. European Journal of Mineralogy, 2012, 24, 783-790.	1.3	14
43	Synthesis and characterization of Zn-doped LiFePO4 cathode materials for Li-ion battery. Materials Chemistry and Physics, 2015, 155, 191-204.	4.0	14
44	Rotating disk electrode study of Pt/Cs3HPMo11VO40 composite catalysts for performing and durable PEM fuel cells. International Journal of Hydrogen Energy, 2016, 41, 11163-11173.	7.1	14
45	Vanadium <i>K</i> -edge XANES in vanadium-bearing model compounds: a full multiple scattering study. Journal of Synchrotron Radiation, 2016, 23, 947-952.	2.4	13
46	Al coordination and local structure in minerals: XAFS determinations and multiple-scattering calculations for K-feldspars. Europhysics Letters, 1997, 38, 465-470.	2.0	12
47	Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia. Geosciences (Switzerland), 2019, 9, 225.	2.2	12
48	North American microtektites are more oxidized than tektites. American Mineralogist, 2013, 98, 1930-1937.	1.9	11
49	Fe and Mg local environment in the synthetic enstatite-ferrosilite join: an experimental and theoretical XANES and XRD study. European Journal of Mineralogy, 2002, 14, 429-436.	1.3	10
50	A high-temperature furnace for <i>in situ</i> synchrotron X-ray spectroscopy under controlled atmospheric conditions. Journal of Synchrotron Radiation, 2008, 15, 489-494.	2.4	10
51	Australasian microtektites from Antarctica: <scp>XAS</scp> determination of the Fe oxidation state. Meteoritics and Planetary Science, 2014, 49, 696-705.	1.6	10
52	The effect of oxygen fugacity and Na/(Na+K) ratio on iron speciation in pantelleritic glasses. Journal of Non-Crystalline Solids, 2017, 478, 65-74.	3.1	10
53	Iron reduction in silicate glass produced during the 1945 nuclear test at the Trinity site (Alamogordo,) Tj ETQq1	1 0.78431	4 rgBT /Over
54	Nickel site distribution and clustering in synthetic double-chain silicates by experimental and theoretical XANES spectroscopy. Physical Review B, 2000, 62, 5473-5477.	3.2	8

#	Article	IF	CITATIONS
55	A 29Si–27Al magic-angle spinning NMR study of natural silica glass from the Libyan Desert (Egypt). Journal of Non-Crystalline Solids, 2001, 279, 88-92.	3.1	8
56	Presence of Metallic Fe Nanoclusters in \hat{l}_{\pm} -(Al,Fe)2O3 Solid Solutions. Journal of Physical Chemistry C, 2008, 112, 16256-16263.	3.1	8
57	Effect of Applying a Carbon Coating on the Crystal Structure and De-/Lithiation Mechanism of Mn-Doped ZnO Lithium-Ion Anodes. Journal of the Electrochemical Society, 2021, 168, 030503.	2.9	8
58	Ion beam study of a possible extraterrestrial body signature in Libyan desert glass. Nuclear Instruments & Methods in Physics Research B, 2000, 170, 187-192.	1.4	7
59	A Novel Synthesis Routine for Woodwardite and Its Affinity towards Light (La, Ce, Nd) and Heavy (Gd) Tj ETQq1 1	l 0 ₂ ,9431	4 rgBT /Over
60	The Structural Role of Ag in Galena PbS. A XANES Study. Physica Scripta, 2005, , 387.	2.5	6
61	Quantitative Study of Porosity and Pore Features in Moldavites by Means of X-ray Micro-CT. Materials, 2014, 7, 3319-3336.	2.9	6
62	Meteoroid atmospheric entry investigated with plasma flow experiments: Petrography and geochemistry of the recovered material. Icarus, 2019, 331, 170-178.	2.5	6
63	Iron oxidation state and local structure in North American tektites. , 2010, , .		5
64	New IR spectroscopic data for determination of water abundances in hydrous pantelleritic glasses. American Mineralogist, 2020, 105, 1060-1068.	1.9	5
65	Impact of Crystal Density on the Electrochemical Behavior of Lithium-Ion Anode Materials: Exemplary Investigation of (Fe-Doped) GeO ₂ . Journal of Physical Chemistry C, 2021, 125, 8947-8958.	3.1	5
66	Tektites and microtektites iron oxidation state and water content. Rendiconti Lincei, 2017, 28, 615-621.	2.2	4
67	Spectroscopic study of volcanic ashes. Journal of Hazardous Materials, 2020, 400, 123213.	12.4	4
68	Electrospun Carbon/Cu _{<i>x</i>} O Nanocomposite material as Sustainable and High Performance Anode for Lithiumâ€ion Batteries. ChemistryOpen, 2019, 8, 781-787.	1.9	3
69	Tektite glasses from Belize, Central America: Petrography, geochemistry, and search for a possible meteoritic component. Geochimica Et Cosmochimica Acta, 2022, , .	3.9	3
70	Ultrafast structural response of shockâ€compressed plagioclase. Meteoritics and Planetary Science, 2022, 57, 635-643.	1.6	3
71	Fe local structure in Pt-free nitrogen-modified carbon based electrocatalysts: XAFS study. Journal of Physics: Conference Series, 2016, 712, 012131.	0.4	2
72	Singolarità cristallochimiche di melaniti italiane messe in evidenza dalla spettroscopia d'assorbimento dei raggi X in luce di sincrotrone alia soglia K dell'alluminio. Rendiconti Lincei, 1996, 7, 251-264.	2.2	1

#	Article	IF	CITATIONS
73	Experimental and theoretical XANES study of the effects of Feâ€"Mg solid solution in the enstatiteâ€"ferrosilite series. Journal of Synchrotron Radiation, 2001, 8, 966-968.	2.4	1
74	Spin-Sensitive and Angular Dependent Detection of Resonant Excitations at the K Absorption Pre-Edge of $\hat{l}\pm$ -Fe2O3. AIP Conference Proceedings, 2007, , .	0.4	1
7 5	Lithiumâ€lon Batteries: Introducing Highly Redoxâ€Active Atomic Centers into Insertionâ€Type Electrodes for Lithiumâ€lon Batteries (Adv. Energy Mater. 25/2020). Advanced Energy Materials, 2020, 10, 2070112.	19.5	1
76	V K-Edge XANES Full Multiple Scattering Study of V-Bearing Phosphate Glasses. Springer Proceedings in Physics, 2021, , 219-231.	0.2	1
77	Spontaneous shape transition of MnxGe1â^'x islands to long nanowires. Beilstein Journal of Nanotechnology, 2021, 12, 366-374.	2.8	1