List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3824191/publications.pdf Version: 2024-02-01

	46984	51562
8,035	47	86
citations	h-index	g-index
122	122	9877
docs citations	times ranked	citing authors
	citations 122	8,03547citationsh-index122122

#	Article	IF	CITATIONS
1	Review and consensus recommendations on clinical <scp>APT</scp> â€weighted imaging approaches at <scp>3T</scp> : Application to brain tumors. Magnetic Resonance in Medicine, 2022, 88, 546-574.	1.9	79
2	Abstract PR013: Oct4 and Sox2 induce cellular transition of glioma stem cells to an immune suppressive, regulatory T cell-like state. Cancer Research, 2022, 82, PR013-PR013.	0.4	0
3	Reprogramming Transcription Factors Oct4 and Sox2 Induce a BRD-Dependent Immunosuppressive Transcriptome in GBM-Propagating Cells. Cancer Research, 2021, 81, 2457-2469.	0.4	31
4	EGFR Activates a TAZ-Driven Oncogenic Program in Glioblastoma. Cancer Research, 2021, 81, 3580-3592.	0.4	12
5	Opinion: miRNAs – The new wave of molecular cancer therapeutics. Translational Oncology, 2021, 14, 101064.	1.7	3
6	Abstract 2419: Two-tiered inhibition of TGFBR2 signaling via ITD-1 and miR-149-3p targets CD44Highglioma stem cells and non-stem-like GBM cells. , 2021, , .		0
7	Monoallelic IDH1 R132H Mutation Mediates Glioma Cell Response to Anticancer Therapies via Induction of Senescence. Molecular Cancer Research, 2021, 19, 1878-1888.	1.5	2
8	Mutant IDH1 promotes phagocytic function of microglia/macrophages in gliomas by downregulating ICAM1. Cancer Letters, 2021, 517, 35-45.	3.2	15
9	STEM-03. Oct4/Sox2 DRIVE AN IMMUNOSUPPRESSIVE GSC PHENOTYPE BY INDUCING T-REG EFFECTOR GENES VIA TGFBR2 SIGNALING. Neuro-Oncology, 2021, 23, vi21-vi22.	0.6	1
10	EXTH-16. LP-184, A NOVEL ALKYLATING AGENT, IS EFFECTIVE IN GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi166-vi167.	0.6	0
11	<scp>d</scp> â€glucose weighted chemical exchange saturation transfer (glucoCEST)â€based dynamic glucose enhanced (DGE) MRI at 3T: early experience in healthy volunteers and brain tumor patients. Magnetic Resonance in Medicine, 2020, 84, 247-262.	1.9	41
12	Hemophagocytic Lymphohistiocytosis Secondary to PD-1 and IDO Inhibition in a Patient with Refractory Glioblastoma. Case Reports in Oncology, 2020, 13, 508-514.	0.3	15
13	A Sox2:miR-486-5p Axis Regulates Survival of GBM Cells by Inhibiting Tumor Suppressor Networks. Cancer Research, 2020, 80, 1644-1655.	0.4	34
14	ShRNA-based POLD2 expression knockdown sensitizes glioblastoma to DNA-Damaging therapeutics. Cancer Letters, 2020, 482, 126-135.	3.2	9
15	Prospective acceleration of parallel RF transmissionâ€based 3D chemical exchange saturation transfer imaging with compressed sensing. Magnetic Resonance in Medicine, 2019, 82, 1812-1821.	1.9	25
16	Extracellular Matrix Protein Tenascin C Increases Phagocytosis Mediated by CD47 Loss of Function in Glioblastoma. Cancer Research, 2019, 79, 2697-2708.	0.4	48
17	The effect of the mTOR inhibitor rapamycin on glucoCEST signal in a preclinical model of glioblastoma. Magnetic Resonance in Medicine, 2019, 81, 3798-3807.	1.9	13
18	CEST MRI of 3â€Oâ€methylâ€Dâ€glucose uptake and accumulation in brain tumors. Magnetic Resonance in Medicine, 2019, 81, 1993-2000.	1.9	42

#	Article	IF	CITATIONS
19	ldentifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR Imaging: A Validation Study with Image-Guided Stereotactic Biopsy. Clinical Cancer Research, 2019, 25, 552-561.	3.2	104
20	Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. Stem Cells Translational Medicine, 2019, 8, 112-123.	1.6	39
21	Targeting UDP-α-d-glucose 6-dehydrogenase inhibits glioblastoma growth and migration. Oncogene, 2018, 37, 2615-2629.	2.6	37
22	Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer, 2018, 18, 1025.	1.1	14
23	Bioreducible Polymeric Nanoparticles Containing Multiplexed Cancer Stem Cell Regulating miRNAs Inhibit Glioblastoma Growth and Prolong Survival. Nano Letters, 2018, 18, 4086-4094.	4.5	117
24	Neuro-Oncology: Current Concepts and Emerging Therapeutics. Neurotherapeutics, 2017, 14, 253-255.	2.1	1
25	TET1 deficiency attenuates the DNA damage response and promotes resistance to DNA damaging agents. Epigenetics, 2017, 12, 854-864.	1.3	20
26	Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas. European Journal of Cancer, 2017, 83, 9-18.	1.3	82
27	Language Mapping Using T2-Prepared BOLD Functional MRI in the Presence of Large Susceptibility Artifacts—Initial Results in Patients With Brain Tumor and Epilepsy. Tomography, 2017, 3, 105-113.	0.8	9
28	Investigational new drugs for brain cancer. Expert Opinion on Investigational Drugs, 2016, 25, 937-956.	1.9	16
29	Regulation of Clioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151. Neoplasia, 2016, 18, 185-198.	2.3	22
30	Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems. Translational Oncology, 2016, 9, 124-129.	1.7	6
31	A monoclonal antibody against KCNK9 K+ channel extracellular domain inhibits tumour growth and metastasis. Nature Communications, 2016, 7, 10339.	5.8	57
32	Salicylic Acid Conjugated Dendrimers Are a Tunable, High Performance CEST MRI NanoPlatform. Nano Letters, 2016, 16, 2248-2253.	4.5	43
33	Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro-Oncology, 2016, 18, 507-517.	0.6	102
34	Multiâ€echo Length and Offset VARied Saturation (MeLOVARS) method for improved CEST imaging. Magnetic Resonance in Medicine, 2015, 73, 488-496.	1.9	27
35	Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer. Magnetic Resonance in Medicine, 2015, 74, 1556-1563.	1.9	94
36	Cancer Stem Cells: Dynamic Entities in an Ever-Evolving Paradigm. Biology and Medicine (Aligarh), 2015, s2, .	0.3	10

#	Article	IF	CITATIONS
37	Dynamic Glucose-Enhanced (DGE) MRI: Translation to Human Scanning and First Results in Glioma Patients. Tomography, 2015, 1, 105-114.	0.8	153
38	The cancer stem cell phenotype: You can't win until you learn how to lose it. Molecular and Cellular Oncology, 2015, 2, e989760.	0.3	3
39	Kruppel-like Factor-9 (KLF9) Inhibits Glioblastoma Stemness through Global Transcription Repression and Integrin α6 Inhibition. Journal of Biological Chemistry, 2014, 289, 32742-32756.	1.6	67
40	Proneural Transcription Factor Atoh1 Drives Highly Efficient Differentiation of Human Pluripotent Stem Cells Into Dopaminergic Neurons. Stem Cells Translational Medicine, 2014, 3, 888-898.	1.6	35
41	HMMR Maintains the Stemness and Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Research, 2014, 74, 3168-3179.	0.4	101
42	Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model. Neuro-Oncology, 2014, 16, 856-867.	0.6	45
43	In Vivo c-Met Pathway Inhibition Depletes Human Glioma Xenografts of Tumor-Propagating Stem-Like Cells. Translational Oncology, 2013, 6, 104-IN1.	1.7	44
44	Threeâ€dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. Journal of Magnetic Resonance Imaging, 2013, 38, 1119-1128.	1.9	181
45	Profiling the Dynamics of a Human Phosphorylome Reveals New Components in HGF/c-Met Signaling. PLoS ONE, 2013, 8, e72671.	1.1	19
46	Collagen IV and CXC chemokine-derived antiangiogenic peptides suppress glioma xenograft growth. Anti-Cancer Drugs, 2012, 23, 706-712.	0.7	16
47	Cancer Stem Cells: Distinct Entities or Dynamically Regulated Phenotypes?. Cancer Research, 2012, 72, 576-580.	0.4	197
48	Regulation of glioblastoma multiforme stemâ€like cells by inhibitor of <scp>DNA</scp> binding proteins and oligodendroglial lineageâ€associated transcription factors. Cancer Science, 2012, 103, 1028-1037.	1.7	20
49	Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor MR imaging. Journal of Neuro-Oncology, 2012, 107, 51-60.	1.4	24
50	Lipid metabolism alterations in U87 glioma cells deficient in very longâ€chain acylâ€CoA synthetase 3 are associated with a less malignant phenotype. FASEB Journal, 2012, 26, 996.1.	0.2	0
51	Importance of Very Long Chain Acylâ€CoA Synthetase 3 (ACSVL3) in cholesterol homeostasis and lipid raft signaling in U87 glioma cells. FASEB Journal, 2012, 26, .	0.2	0
52	PTEN reconstitution alters glioma responses to c-Met pathway inhibition. Anti-Cancer Drugs, 2011, 22, 905-912.	0.7	12
53	Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nature Medicine, 2011, 17, 130-134.	15.2	448
54	Tumor-specific imaging through progression elevated gene-3 promoter-driven gene expression. Nature Medicine, 2011, 17, 123-129.	15.2	84

#	Article	IF	CITATIONS
55	Krüppel-Like Family of Transcription Factor 9, a Differentiation-Associated Transcription Factor, Suppresses Notch1 Signaling and Inhibits Glioblastoma-Initiating Stem Cells. Stem Cells, 2011, 29, 20-31.	1.4	80
56	c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9951-9956.	3.3	232
57	A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro-Oncology, 2011, 13, 437-446.	0.6	153
58	FasL gene knock-down therapy enhances the antiglioma immune response. Neuro-Oncology, 2010, 12, 482-9.	0.6	19
59	Cyr61 Mediates Hepatocyte Growth Factor–Dependent Tumor Cell Growth, Migration, and Akt Activation. Cancer Research, 2010, 70, 2932-2941.	0.4	47
60	Molecular Therapy Targeting Sonic Hedgehog and Hepatocyte Growth Factor Signaling in a Mouse Model of Medulloblastoma. Molecular Cancer Therapeutics, 2010, 9, 2627-2636.	1.9	35
61	Prognostic significance of contrast-enhancing anaplastic astrocytomas in adults. Journal of Neurosurgery, 2010, 113, 286-292.	0.9	37
62	Unmasking the multiforme in glioblastoma. Nature Reviews Neurology, 2010, 6, 304-305.	4.9	10
63	Recurrence and malignant degeneration after resection of adult hemispheric low-grade gliomas. Journal of Neurosurgery, 2010, 112, 10-17.	0.9	173
64	Identification of Inhibitors of ABCG2 by a Bioluminescence Imaging–Based High-Throughput Assay. Cancer Research, 2009, 69, 5867-5875.	0.4	44
65	EGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII+ glioblastoma xenografts. Molecular Cancer Therapeutics, 2009, 8, 1751-1760.	1.9	61
66	Acyl-CoA Synthetase VL3 Knockdown Inhibits Human Glioma Cell Proliferation and Tumorigenicity. Cancer Research, 2009, 69, 9175-9182.	0.4	42
67	Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. Journal of Neurosurgery, 2009, 110, 583-588.	0.9	252
68	<i>DNER</i> , an Epigenetically Modulated Gene, Regulates Glioblastoma-Derived Neurosphere Cell Differentiation and Tumor Propagation. Stem Cells, 2009, 27, 1473-1486.	1.4	84
69	Epilepsy and temporal lobe injury after skull base proton beam therapy. Journal of Clinical Neuroscience, 2009, 16, 1220-1221.	0.8	2
70	Treatment of Medulloblastoma with Hedgehog Pathway Inhibitor GDC-0449. New England Journal of Medicine, 2009, 361, 1173-1178.	13.9	951
71	Hedgehog Pathway Inhibitor HhAntag691 Is a Potent Inhibitor of ABCG2/BCRP and ABCB1/Pgp. Neoplasia, 2009, 11, 96-101.	2.3	71
72	Camptothecin and Fas receptor agonists synergistically induce medulloblastoma cell death: ROS-dependent mechanisms. Anti-Cancer Drugs, 2009, 20, 770-778.	0.7	19

#	Article	IF	CITATIONS
73	Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts. NMR in Biomedicine, 2008, 21, 489-497.	1.6	92
74	Functional and molecular interactions between the HGF/c-Met pathway and c-Myc in large-cell medulloblastoma. Laboratory Investigation, 2008, 88, 98-111.	1.7	61
75	Abnormal DNA Methylation of <i>CD133</i> in Colorectal and Glioblastoma Tumors. Cancer Research, 2008, 68, 8094-8103.	0.4	153
76	PTEN Has Tumor-Promoting Properties in the Setting of Gain-of-Function p53 Mutations. Cancer Research, 2008, 68, 1723-1731.	0.4	92
77	Hepatocyte Growth Factor and Sonic Hedgehog Expression in Cerebellar Neural Progenitor Cells Costimulate Medulloblastoma Initiation and Growth. Cancer Research, 2008, 68, 7838-7845.	0.4	42
78	Transcription-Dependent Epidermal Growth Factor Receptor Activation by Hepatocyte Growth Factor. Molecular Cancer Research, 2008, 6, 139-150.	1.5	85
79	ABCG2/BCRP Expression Modulates <scp>d</scp> -Luciferin–Based Bioluminescence Imaging. Cancer Research, 2007, 67, 9389-9397.	0.4	80
80	Ribotoxic Stress Sensitizes Glioblastoma Cells to Death Receptor–Induced Apoptosis: Requirements for c-Jun NH2-Terminal Kinase and Bim. Molecular Cancer Research, 2007, 5, 783-792.	1.5	40
81	Emerging monoclonal antibody therapies for malignant gliomas. Expert Opinion on Investigational Drugs, 2007, 16, 477-494.	1.9	13
82	Hepatocyte growth factor increases mitochondrial mass in glioblastoma cells. Biochemical and Biophysical Research Communications, 2006, 345, 1358-1364.	1.0	6
83	Transgenic expression of human FGF-1 protects against hypoxic–ischemic injury in perinatal brain by intervening at caspase-XIAP signaling cascades. Neurobiology of Disease, 2006, 22, 677-690.	2.1	27
84	Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts Clinical Cancer Research, 2006, 12, 1292-1298.	3.2	153
85	Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. Laboratory Investigation, 2005, 85, 1457-1470.	1.7	102
86	Sensitization of Glioma Cells to Fas-Dependent Apoptosis by Chemotherapy-Induced Oxidative Stress. Cancer Research, 2005, 65, 5248-5255.	0.4	52
87	Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro-Oncology, 2005, 7, 436-451.	0.6	269
88	The Scatter Factor/Hepatocyte Growth Factor: c-Met Pathway in Human Embryonal Central Nervous System Tumor Malignancy. Cancer Research, 2005, 65, 9355-9362.	0.4	103
89	Targeting the c-Met Pathway Potentiates Glioblastoma Responses to γ-Radiation. Clinical Cancer Research, 2005, 11, 4479-4486.	3.2	117
90	Neuronal Pentraxin 1: A Novel Mediator of Hypoxic-Ischemic Injury in Neonatal Brain. Journal of Neuroscience, 2004, 24, 4187-4196.	1.7	44

#	Article	IF	CITATIONS
91	Regulation of c-Met-dependent gene expression by PTEN. Oncogene, 2004, 23, 9173-9182.	2.6	51
92	CD44-independent hepatocyte growth factor/c-Met autocrine loop promotes malignant peripheral nerve sheath tumor cell invasion in vitro. Glia, 2004, 45, 297-306.	2.5	36
93	Vascular Gene Expression in Nonneoplastic and Malignant Brain. American Journal of Pathology, 2004, 165, 601-608.	1.9	168
94	Down-regulation of c-Met inhibits growth in the liver of human colorectal carcinoma cells. Cancer Research, 2003, 63, 2990-6.	0.4	55
95	Reduction of stromal fibroblast-induced mammary tumor growth, by retroviral ribozyme transgenes to hepatocyte growth factor/scatter factor and its receptor, c-MET. Clinical Cancer Research, 2003, 9, 4274-81.	3.2	38
96	Scatter Factor/Hepatocyte Growth Factor Stimulation of Glioblastoma Cell Cycle Progression through G 1 Is c-Myc Dependent and Independent of p27 Suppression, Cdk2 Activation, or E2F1-Dependent Transcription. Molecular and Cellular Biology, 2002, 22, 2703-2715.	1,1	37
97	Primary brain tumours in adults. , 2002, , 1431-1447.		3
98	Neuroprotection by scatter factor/hepatocyte growth factor and FGF-1 in cerebellar granule neurons is phosphatidylinositol 3-kinase/Akt-dependent and MAPK/CREB-independent. Journal of Neurochemistry, 2002, 81, 365-378.	2.1	62
99	Neuroprotection by scatter factor/hepatocyte growth factor and FGF-1 in cerebellar granule neurons is phosphatidylinositol 3-kinase/Akt-dependent and MAPK/CREB-independent. Journal of Neurochemistry, 2002, 81, 901-901.	2.1	0
100	Microarray Analysis of Differential Gene Expression in Lead-Exposed Astrocytes. Toxicology and Applied Pharmacology, 2001, 176, 34-53.	1.3	53
101	Hepatocyte Growth Factor/Scatter Factor Blocks the Mitochondrial Pathway of Apoptosis Signaling in Breast Cancer Cells. Journal of Biological Chemistry, 2001, 276, 47257-47265.	1.6	41
102	Induction of Vascular Endothelial Growth Factor in Human Astrocytes by Lead. Journal of Biological Chemistry, 2000, 275, 27874-27882.	1.6	73
103	Glioma Inhibition by HGF/NK2, an Antagonist of Scatter Factor/Hepatocyte Growth Factor. Biochemical and Biophysical Research Communications, 2000, 273, 287-293.	1.0	23
104	Scatter factor/hepatocyte growth factor gene transfer increases rat blood–glioma barrier permeability. Brain Research, 1999, 833, 173-180.	1.1	16
105	Alterations in blood-brain barrier glucose transport in SIV-infected macaques. Journal of NeuroVirology, 1999, 5, 695-702.	1.0	26
106	Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. International Journal of Developmental Neuroscience, 1999, 17, 517-530.	0.7	97
107	IL-10 gene transfer to intracranial 9L glioma: tumor inhibition and cooperation with IL-2. Journal of Neuroimmunology, 1998, 92, 50-59.	1.1	22
108	Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. , 1998, 75, 19-28.		108

#	Article	IF	CITATIONS
109	Human FGF-1 gene delivery protects against quinolinate-induced striatal and hippocampal injury in neonatal rats. European Journal of Neuroscience, 1998, 10, 2490-2499.	1.2	31
110	Human FGF-1 gene delivery protects against quinolinate-induced striatal and hippocampal injury in neonatal rats. European Journal of Neuroscience, 1998, 10, 2490-2499.	1.2	1
111	Dexamethasone inhibits Glioma-induced Formation of Capillary like Structures in vitro and Angiogenesis in vivo. Klinische Padiatrie, 1997, 209, 275-277.	0.2	27
112	Scatter Factor/Hepatocyte Growth Factor Expression Enhances Human Glioblastoma Tumorigenicity and Growth. Biochemical and Biophysical Research Communications, 1997, 235, 743-747.	1.0	66
113	Endothelial cell-based cytokine gene delivery inhibits 9L glioma growth in vivo. Brain Research, 1996, 731, 161-170.	1.1	21
114	Scatter factor expression and regulation in human glial tumors. , 1996, 67, 248-255.		110
115	Modulation of Serine Proteinases and Metalloproteinases During Morphogenic Glialâ€Endothelial Interactions. Journal of Neurochemistry, 1996, 66, 1657-1664.	2.1	11
116	Regulation of in vitro glia-induced microvessel morphogenesis by urokinase. Journal of Cellular Physiology, 1994, 158, 317-324.	2.0	14
117	Dexamethasone reduces vascular density and plasminogen activator activity in 9L rat brain tumors. Brain Research, 1993, 604, 79-85.	1.1	62
118	Selective endothelial growth inhibition by tetracyclines that inhibit collagenase. Biochemical and Biophysical Research Communications, 1992, 188, 740-745.	1.0	63
119	Steroid Inhibition of Neural Micro vessel Morphogenesis In Vitro: Receptor Mediation and Astroglial Dependence. Journal of Neurochemistry, 1992, 58, 1023-1032.	2.1	39
120	Astroglial-Induced In Vitro Angiogenesis: Requirements for RNA and Protein Synthesis. Journal of Neurochemistry, 1991, 57, 1231-1239.	2.1	46
121	Astrocytes induce neural microvascular endothelial cells to form capillary-like structures in vitro. Journal of Cellular Physiology, 1990, 144, 204-215.	2.0	115

122 Contact formation by fibroblasts adhering to heparan sulfate-binding substrata (fibronectin or) Tj ETQq0 0 0 rgBT $\frac{10}{1.2}$ Tf 50 22