
Susanna Seppälä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3824111/publications.pdf Version: 2024-02-01

<u> Susanna Seddãyãy</u>

#	Article	IF	CITATIONS
1	The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metabolic Engineering, 2017, 44, 45-59.	7.0	43
2	Genomic analysis ofÂmethanogenic archaeaÂreveals a shift towards energy conservation. BMC Genomics, 2017, 18, 639.	2.8	41
3	Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus. MSystems, 2021, 6, .	3.8	33
4	Co-cultivation of the anaerobic fungus <i>Anaeromyces robustus</i> with <i>Methanobacterium bryantii</i> enhances transcription of carbohydrate active enzymes. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1427-1433.	3.0	32
5	Integrating Systems and Synthetic Biology to Understand and Engineer Microbiomes. Annual Review of Biomedical Engineering, 2021, 23, 169-201.	12.3	23
6	Harnessing Nature's Anaerobes for Biotechnology and Bioprocessing. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 105-128.	6.8	22
7	Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters. Microbial Cell Factories, 2016, 15, 212.	4.0	21
8	Coâ€ʿcultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. Biotechnology for Biofuels, 2021, 14, 234.	6.2	21
9	An expression tag toolbox for microbial production of membrane bound plant cytochromes P450. Biotechnology and Bioengineering, 2017, 114, 751-760.	3.3	19
10	A SWEET surprise: Anaerobic fungal sugar transporters and chimeras enhance sugar uptake in yeast. Metabolic Engineering, 2021, 66, 137-147.	7.0	19
11	Linking â€~omics' to function unlocks the biotech potential of non-model fungi. Current Opinion in Systems Biology, 2019, 14, 9-17.	2.6	18
12	Genomic and proteomic biases inform metabolic engineering strategies for anaerobic fungi. Metabolic Engineering Communications, 2020, 10, e00107.	3.6	18
13	Heterologous transporters from anaerobic fungi bolster fluoride tolerance in Saccharomyces cerevisiae. Metabolic Engineering Communications, 2019, 9, e00091.	3.6	15
14	Engineered fluoride sensitivity enables biocontainment and selection of genetically-modified yeasts. Nature Communications, 2020, 11, 5459.	12.8	12
15	Homo-oligomerization of the human adenosine A2A receptor is driven by the intrinsically disordered C-terminus. ELife, 2021, 10, .	6.0	8
16	17 The Biotechnological Potential of Anaerobic Gut Fungi. , 2020, , 413-437.		3
17	Identification of novel membrane proteins for improved lignocellulose conversion. Current Opinion in Biotechnology, 2022, 73, 198-204.	6.6	2