Nicholas J Short

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3824064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrathecal prophylaxis with 12 versus 8 administrations reduces the incidence of central nervous system relapse in patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. American Journal of Hematology, 2023, 98, .	2.0	11
2	SOHO State of the Art Updates & Next Questions: Intensive and Non–Intensive Approaches for Adults With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 61-66.	0.2	5
3	Value of measurable residual disease monitoring in patients with acute promyelocytic leukemia in the era of frontline â€~chemotherapy-free' therapy. Leukemia and Lymphoma, 2022, 63, 672-675.	0.6	2
4	Prediction of early (4â€week) mortality in acute myeloid leukemia with intensive chemotherapy. American Journal of Hematology, 2022, 97, 68-78.	2.0	25
5	The Evolution of Research and Therapy With Hypomethylating Agents in Acute Myeloid Leukemia and Myelodysplastic Syndrome: New Directions for Old Drugs. Cancer Journal (Sudbury, Mass), 2022, 28, 29-36.	1.0	5
6	Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer Journal, 2022, 12, 10.	2.8	48
7	Impact of frontline treatment approach on outcomes in patients with secondary AML with prior hypomethylating agent exposure. Journal of Hematology and Oncology, 2022, 15, 12.	6.9	13
8	Improved outcomes among newly diagnosed patients with <scp>FMSâ€like tyrosine kinase 3 internal tandem duplication</scp> mutated acute myeloid leukemia treated with contemporary therapy: Revisiting the European LeukemiaNet adverse risk classification. American Journal of Hematology, 2022, 97, 329-337.	2.0	15
9	Central Nervous System Involvement in Adults with Acute Leukemia: Diagnosis, Prevention, and Management. Current Oncology Reports, 2022, 24, 427-436.	1.8	18
10	Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib. Leukemia, 2022, 36, 1253-1260.	3.3	9
11	Dismal outcomes of patients with relapsed/refractory Philadelphia chromosomeâ€negative Bâ€cell acute lymphoblastic leukemia after failure of both inotuzumab ozogamicin and blinatumomab. American Journal of Hematology, 2022, 97, .	2.0	7
12	Hyperleukocytosis and leukostasis in acute and chronic leukemias. Leukemia and Lymphoma, 2022, 63, 1780-1791.	0.6	8
13	Clinical Value of Measurable Residual Disease in Acute Lymphoblastic Leukemia. Blood and Lymphatic Cancer: Targets and Therapy, 2022, Volume 12, 7-16.	1.2	9
14	<scp>Treatmentâ€free</scp> remission in patients with chronic myeloid leukemia following the discontinuation of tyrosine kinase inhibitors. American Journal of Hematology, 2022, 97, 856-864.	2.0	33
15	Prediction of survival with intensive chemotherapy in acute myeloid leukemia. American Journal of Hematology, 2022, 97, 865-876.	2.0	12
16	Urgent cytoreduction for newly diagnosed acute myeloid leukemia patients allows acquisition of pretreatment genomic data and enrollment on investigational clinical trials. American Journal of Hematology, 2022, 97, 885-894.	2.0	4
17	A multi-arm phase Ib/II study designed for rapid, parallel evaluation of novel immunotherapy combinations in relapsed/refractory acute myeloid leukemia. Leukemia and Lymphoma, 2022, 63, 2161-2170.	0.6	12
18	Venetoclax combined with induction chemotherapy in patients with newly diagnosed acute myeloid leukaemia: a post-hoc, propensity score-matched, cohort study. Lancet Haematology,the, 2022, 9, e350-e360.	2.2	26

#	Article	IF	CITATIONS
19	Hypomethylating agent and venetoclax with FLT3 inhibitor "triplet―therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer Journal, 2022, 12, 77.	2.8	33
20	High-sensitivity next-generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse. Blood Advances, 2022, 6, 4006-4014.	2.5	37
21	Long-Term Outcomes among Adolescent and Young Adult Survivors of Acute Leukemia: A Surveillance, Epidemiology, and End Results Analysis. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1176-1184.	1.1	6
22	Venetoclax combined with <scp>FLAGâ€IDA</scp> induction and consolidation in newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2022, 97, 1035-1043.	2.0	31
23	Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. American Journal of Hematology, 2022, 97, 1236-1256.	2.0	68
24	Blinatumomab is associated with favorable outcomes in patients with Bâ€cell lineage acute lymphoblastic leukemia and positive measurable residual disease at a threshold of 10 ^{â^'4} and higher. American Journal of Hematology, 2022, 97, 1135-1141.	2.0	6
25	Phase II Study of Venetoclax Added to Cladribine Plus Low-Dose Cytarabine Alternating With 5-Azacitidine in Older Patients With Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 2022, 40, 3848-3857.	0.8	41
26	Choosing between intensive and less intensive front-line treatment approaches for older patients with newly diagnosed acute myeloid leukaemia. Lancet Haematology,the, 2022, 9, e535-e545.	2.2	8
27	Treatment of Adults With Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia—From Intensive Chemotherapy Combinations to Chemotherapy-Free Regimens. JAMA Oncology, 2022, 8, 1340.	3.4	30
28	Realâ€life incidence of thrombotic events in leukemia patients treated with ponatinib. American Journal of Hematology, 2022, 97, .	2.0	4
29	Treating Leukemia in the Time of COVID-19. Acta Haematologica, 2021, 144, 132-145.	0.7	57
30	The Clinical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia, 2021, 35, 691-700.	3.3	37
31	Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens. Haematologica, 2021, 106, 894-898.	1.7	80
32	The Hyper-CVAD Regimen is an Optimal Pediatric-inspired Regimen for Adolescents and Adults With Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 63-65.	0.2	3
33	Translocation t(1;19)(q23;p13) in adult acute lymphoblastic leukemia – a distinct subtype with favorable prognosis. Leukemia and Lymphoma, 2021, 62, 224-228.	0.6	6
34	Venetoclax with decitabine vs intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatmentâ€related mortality. American Journal of Hematology, 2021, 96, 282-291.	2.0	59
35	Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 Inhibitors. Blood Cancer Discovery, 2021, 2, 125-134.	2.6	50
36	Efficacy of inotuzumab ozogamicin in patients with Philadelphia chromosome–positive relapsed/refractory acute lymphoblastic leukemia. Cancer, 2021, 127, 905-913.	2.0	30

#	Article	IF	CITATIONS
37	Clinical characteristics and outcomes in patients with acute myeloid leukemia with concurrent FLT3 â€ITD and IDH mutations. Cancer, 2021, 127, 381-390.	2.0	10
38	Phase 2 study of lenalidomide maintenance for patients with highâ€risk acute myeloid leukemia in remission. Cancer, 2021, 127, 1894-1900.	2.0	5
39	Two Cases of Possible Familial Chronic Myeloid Leukemia in a Family with Extensive History of Cancer. Acta Haematologica, 2021, 144, 585-590.	0.7	3
40	Flow cytometric immunophenotypic alterations of persistent clonal haematopoiesis in remission bone marrows of patients with <i>NPM1</i> â€mutated acute myeloid leukaemia. British Journal of Haematology, 2021, 192, 1054-1063.	1.2	28
41	Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancer Discovery, 2021, 11, 1440-1453.	7.7	137
42	Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer Journal, 2021, 11, 25.	2.8	85
43	Acute myeloid leukemia: current progress and future directions. Blood Cancer Journal, 2021, 11, 41.	2.8	313
44	Decitabine and venetoclax for <i><scp>IDH1/2</scp>â€</i> mutated acute myeloid leukemia. American Journal of Hematology, 2021, 96, E154-E157.	2.0	19
45	Inotuzumab Ozogamicin for Relapsed/Refractory Acute Lymphoblastic Leukemia in the INO-VATE Trial: CD22 Pharmacodynamics, Efficacy, and Safety by Baseline CD22. Clinical Cancer Research, 2021, 27, 2742-2754.	3.2	16
46	The clinical development of antibody–drug conjugates — lessons from leukaemia. Nature Reviews Clinical Oncology, 2021, 18, 418-433.	12.5	28
47	Evolutionary action score identifies a subset of TP53 mutated myelodysplastic syndrome with favorable prognosis. Blood Cancer Journal, 2021, 11, 52.	2.8	5
48	Outcomes in patients with CRLF2 overexpressed acute lymphoblastic leukemia after allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation, 2021, 56, 1746-1749.	1.3	5
49	Outcome of Tâ€cell acute lymphoblastic leukemia/lymphoma: Focus on <scp>nearâ€ETP</scp> phenotype and differential impact of nelarabine. American Journal of Hematology, 2021, 96, 589-598.	2.0	42
50	Longâ€ŧerm followâ€up of salvage therapy using a combination of inotuzumab ozogamicin and mini–hyper VD with or without blinatumomab in relapsed/refractory Philadelphia chromosome–negative acute lymphoblastic leukemia. Cancer, 2021, 127, 2025-2038.	2.0	24
51	A new era in the treatment of acute lymphoblastic leukemia. Blood, 2021, 137, 1563-1564.	0.6	3
52	Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Advances, 2021, 5, 2173-2183.	2.5	35
53	Duration of cytopenias with concomitant venetoclax and azole antifungals in acute myeloid leukemia. Cancer, 2021, 127, 2489-2499.	2.0	34
54	Acute lymphoblastic leukemia: A populationâ€based study of outcome in the <scp>U</scp> nited <scp>S</scp> tates based on the surveillance, epidemiology, and end results (<scp>SEER</scp>) database, <scp>1980</scp> – <scp>2017</scp> . American Journal of Hematology, 2021, 96, 650-658.	2.0	52

#	Article	IF	CITATIONS
55	Prognostic factors for progression in patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia in complete molecular response within 3 months of therapy with tyrosine kinase inhibitors. Cancer, 2021, 127, 2648-2656.	2.0	33
56	Outcome of patients with chronic myeloid leukemia in lymphoid blastic phase and Philadelphia chromosome–positive acute lymphoblastic leukemia treated with hyper VAD and dasatinib. Cancer, 2021, 127, 2641-2647.	2.0	15
57	An effective chemotherapyâ€free regimen of ponatinib plus venetoclax for relapsed/refractory <scp>P</scp> hiladelphia chromosomeâ€positive acute lymphoblastic leukemia. American Journal of Hematology, 2021, 96, E229-E232.	2.0	17
58	Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Advances, 2021, 5, 1876-1883.	2.5	56
59	Activity of venetoclax-based therapy in chronic myelomonocytic leukemia. Leukemia, 2021, 35, 1494-1499.	3.3	16
60	De novo acute myeloid leukemia: A populationâ€based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017. Cancer, 2021, 127, 2049-2061.	2.0	79
61	Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia. Nature Communications, 2021, 12, 2607.	5.8	61
62	<scp>FLT3</scp> inhibitor based induction and allogeneic stem cell transplant in complete remission 1 improve outcomes in patients with newly diagnosed <scp>Acute Myeloid Leukemia</scp> with very low <scp>FLT3</scp> allelic burden. American Journal of Hematology, 2021, 96, E275-E279.	2.0	3
63	Phase II study of the IDH2-inhibitor enasidenib in patients with high-risk IDH2-mutated myelodysplastic syndromes (MDS) Journal of Clinical Oncology, 2021, 39, 7010-7010.	0.8	8
64	Inotuzumab ozogamicin with bosutinib for relapsed or refractory Philadelphia chromosome positive acute lymphoblastic leukemia or lymphoid blast phase of chronic myeloid leukemia. American Journal of Hematology, 2021, 96, 1000-1007.	2.0	23
65	Characteristics and outcomes of patients diagnosed with DNMT3A mutated acute myeloblastic leukemia Journal of Clinical Oncology, 2021, 39, e19018-e19018.	0.8	0
66	Myeloid/lymphoid neoplasms with FLT3 rearrangement. Modern Pathology, 2021, 34, 1673-1685.	2.9	21
67	Longâ€term results of lowâ€intensity chemotherapy with clofarabine or cladribine combined with lowâ€dose cytarabine alternating with decitabine in older patients with newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2021, 96, 914-924.	2.0	13
68	Combination of ponatinib and blinatumomab in Philadelphia chromosome-positive acute lymphoblastic leukemia: Early results from a phase II study Journal of Clinical Oncology, 2021, 39, 7001-7001.	0.8	18
69	Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Frontiers in Oncology, 2021, 11, 656218.	1.3	63
70	Quizartinib with decitabine and venetoclax (triplet) is highly active in patients with FLT3-ITD mutated acute myeloid leukemia (AML) Journal of Clinical Oncology, 2021, 39, e19019-e19019.	0.8	4
71	The Role of Acute Myeloid Leukemia Minimal Residual Disease in Regulatory Decision-making—Reply. JAMA Oncology, 2021, 7, 784.	3.4	2
72	Current Approaches to Philadelphia Chromosome–Positive B-Cell Lineage Acute Lymphoblastic Leukemia: Role of Tyrosine Kinase Inhibitor and Stem Cell Transplant. Current Oncology Reports, 2021, 23, 95.	1.8	4

#	Article	IF	CITATIONS
73	Central nervous system involvement in blastic plasmacytoid dendritic cell neoplasm. Blood, 2021, 138, 1373-1377.	0.6	31
74	A phase 1b/2 study of azacitidine with PD‣1 antibody avelumab in relapsed/refractory acute myeloid leukemia. Cancer, 2021, 127, 3761-3771.	2.0	34
75	Impact of frontline treatment approach on outcomes of myeloid blast phase CML. Journal of Hematology and Oncology, 2021, 14, 94.	6.9	19
76	Therapeutic implications of menin inhibition in acute leukemias. Leukemia, 2021, 35, 2482-2495.	3.3	76
77	Outcomes in patients with newly diagnosed <i>TP53</i> â€mutated acute myeloid leukemia with or without venetoclaxâ€based therapy. Cancer, 2021, 127, 3541-3551.	2.0	40
78	Hyper VAD plus ofatumumab versus hyper VAD plus rituximab as frontline therapy in adults with Philadelphia chromosome–negative acute lymphoblastic leukemia: A propensity score analysis. Cancer, 2021, 127, 3381-3389.	2.0	10
79	Optimizing the treatment of acute lymphoblastic leukemia in younger and older adults: new drugs and evolving paradigms. Leukemia, 2021, 35, 3044-3058.	3.3	29
80	Outcomes of <i>TP53</i> â€mutant acute myeloid leukemia with decitabine and venetoclax. Cancer, 2021, 127, 3772-3781.	2.0	80
81	Impact of <scp>Philadelphia</scp> chromosomeâ€like alterations on efficacy and safety of blinatumomab in adults with relapsed/refractory acute lymphoblastic leukemia: A post hoc analysis from the phase 3 <scp>TOWER</scp> study. American Journal of Hematology, 2021, 96, E379-E383.	2.0	12
82	Long term outcome of Hyper-CVAD-R for Burkitt leukemia/lymphoma and high-grade B-cell lymphoma: focus on CNS relapse. Blood Advances, 2021, 5, 3913-3918.	2.5	5
83	Optimizing Risk Stratification in Acute Myeloid Leukemia: Dynamic Models for a Dynamic Therapeutic Landscape. Journal of Clinical Oncology, 2021, 39, 2535-2538.	0.8	14
84	Venetoclax plus intensive chemotherapy with cladribine, idarubicin, and cytarabine in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a cohort from a single-centre, single-arm, phase 2 trial. Lancet Haematology,the, 2021, 8, e552-e561.	2.2	81
85	Development of <scp><i>TP53</i></scp> mutations over the course of therapy for acute myeloid leukemia. American Journal of Hematology, 2021, 96, 1420-1428.	2.0	10
86	Tenâ€day decitabine with venetoclax versus intensive chemotherapy in relapsed or refractory acute myeloid leukemia: A propensity scoreâ€matched analysis. Cancer, 2021, 127, 4213-4220.	2.0	24
87	Hyper-CVAD in 2021: Lessons Learned and New Approaches. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S82-S84.	0.2	О
88	Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer Journal, 2021, 11, 162.	2.8	32
89	Outcomes of acute lymphoblastic leukemia with <i>KMT2A</i> (<i>MLL</i>) rearrangement: the MD Anderson experience. Blood Advances, 2021, 5, 5415-5419.	2.5	24
90	Acute Myeloid Leukemia: Historical Perspective and Progress in Research and Therapy Over 5 Decades. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 580-597.	0.2	28

#	Article	IF	CITATIONS
91	Prognostic impact of conventional cytogenetics in acute myeloid leukemia treated with venetoclax and decitabine. Leukemia and Lymphoma, 2021, , 1-5.	0.6	2
92	Prognostic and therapeutic implications of measurable residual disease in acute myeloid leukemia. Journal of Hematology and Oncology, 2021, 14, 137.	6.9	33
93	Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology, 2021, 39, 2768-2778.	0.8	173
94	Single-cell polyfunctional proteomics of CD4 cells from patients with AML predicts responses to anti–PD-1–based therapy. Blood Advances, 2021, 5, 4569-4574.	2.5	15
95	When Less Is More: Reevaluating the Role of Intensive Chemotherapy for Older Adults With Acute Myeloid Leukemia in the Modern Era. Journal of Clinical Oncology, 2021, 39, 3104-3108.	0.8	8
96	Harnessing the benefits of available targeted therapies in acute myeloid leukaemia. Lancet Haematology,the, 2021, 8, e922-e933.	2.2	27
97	Impact of luteinizing hormone suppression on hematopoietic recovery after intensive chemotherapy in patients with leukemia. Haematologica, 2021, 106, 0-0.	1.7	6
98	Frontline Therapy of Newly Diagnosed Acute Lymphoblastic Leukemia. Hematologic Malignancies, 2021, , 169-184.	0.2	0
99	Minimal or Measurable Residual Disease in Acute Lymphoblastic Leukemia. Hematologic Malignancies, 2021, , 205-218.	0.2	0
100	Management of Relapsed/Refractory Acute Myeloid Leukemia. Hematologic Malignancies, 2021, , 89-109.	0.2	0
101	Discontinuation of Maintenance Tyrosine Kinase Inhibitors in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia outside of Transplant. Acta Haematologica, 2021, 144, 285-292.	0.7	10
102	Updated Results from a Phase II Study of Hyper-CVAD with Sequential Blinatumomab in Adults with Newly Diagnosed Philadelphia Chromosome-Negative B-Cell Acute Lymphoblastic Leukemia. Blood, 2021, 138, 1233-1233.	0.6	3
103	A Triplet Combination of Azacitidine, Venetoclax and Gilteritinib for Patients with <i>FLT3</i> -Mutated Acute Myeloid Leukemia: Results from a Phase I/II Study. Blood, 2021, 138, 696-696.	0.6	33
104	Phase II Study of Venetoclax Added to Cladribine (CLAD) and Low Dose AraC (LDAC) Alternating with 5-Azacytidine (AZA) in Older and Unfit Patients with Newly Diagnosed Acute Myeloid Leukemia (AML). Blood, 2021, 138, 367-367.	0.6	3
105	Updated Results of a Phase II Study of Ponatinib and Blinatumomab for Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood, 2021, 138, 2298-2298.	0.6	19
106	Concomitant targeting of BCL2 with venetoclax and MAPK signaling with cobimetinib in acute myeloid leukemia models. Haematologica, 2020, 105, 697-707.	1.7	78
107	The early achievement of measurable residual disease negativity in the treatment of adults with Philadelphiaâ€negative B ell acute lymphoblastic leukemia is a strong predictor for survival. American Journal of Hematology, 2020, 95, 144-150.	2.0	25
108	Longâ€ŧerm followâ€up of lower dose dasatinib (50Âmg daily) as frontline therapy in newly diagnosed chronicâ€phase chronic myeloid leukemia. Cancer, 2020, 126, 67-75.	2.0	87

#	Article	IF	CITATIONS
109	FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia, 2020, 34, 682-696.	3.3	140
110	Clinical Experience With Venetoclax Combined With Chemotherapy for Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 212-218.	0.2	71
111	Risk of Infection Associated With Ibrutinib in Patients With B-Cell Malignancies: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 87-97.e5.	0.2	26
112	Impact of the variant allele frequency of <i>ASXL1</i> , <i>DNMT3A</i> , <i>JAK2</i> , <i>TET2</i> , <i>TP53</i> , and <i>NPM1</i> on the outcomes of patients with newly diagnosed acute myeloid leukemia. Cancer, 2020, 126, 765-774.	2.0	69
113	Impact of minimal residual disease status in patients with relapsed/refractory acute lymphoblastic leukemia treated with inotuzumab ozogamicin in the phase III INO-VATE trial. Leukemia Research, 2020, 88, 106283.	0.4	32
114	Association of Measurable Residual Disease With Survival Outcomes in Patients With Acute Myeloid Leukemia. JAMA Oncology, 2020, 6, 1890.	3.4	207
115	Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. Journal of Hematology and Oncology, 2020, 13, 132.	6.9	18
116	10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematology,the, 2020, 7, e724-e736.	2.2	201
117	Phase I/II study of dasatinib in combination with decitabine in patients with accelerated or blast phase chronic myeloid leukemia. American Journal of Hematology, 2020, 95, 1288-1295.	2.0	28
118	Monoclonal antibodies in frontline acute lymphoblastic leukemia. Best Practice and Research in Clinical Haematology, 2020, 33, 101226.	0.7	3
119	Antibody based therapy in relapsed acute lymphoblastic leukemia. Best Practice and Research in Clinical Haematology, 2020, 33, 101225.	0.7	6
120	Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia: outcomes by disease burden. Blood Cancer Journal, 2020, 10, 81.	2.8	34
121	Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematology,the, 2020, 7, e523-e533.	2.2	43
122	Survivorship in AML – a landmark analysis on the outcomes of acute myelogenous leukemia patients after maintaining complete remission for at least 3 years. Leukemia and Lymphoma, 2020, 61, 3120-3127.	0.6	12
123	Outcome of patients with IDH1/2-mutated post–myeloproliferative neoplasm AML in the era of IDH inhibitors. Blood Advances, 2020, 4, 5336-5342.	2.5	37
124	Emergence of BCR–ABL1 Fusion in AML Post–FLT3 Inhibitor-Based Therapy: A Potentially Targetable Mechanism of Resistance – A Case Series. Frontiers in Oncology, 2020, 10, 588876.	1.3	13
125	Management of Older Patients with Acute Lymphocytic Leukemia — Novel Treatment Strategies. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S30-S31.	0.2	1
126	Intensive Versus Non-Intensive Approach to Adults with Ph+ ALL: An Intensive Approach Is Still Standard of Care. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S52-S53.	0.2	2

#	Article	IF	CITATIONS
127	Concepts in immuno-oncology: tackling B cell malignancies with CD19-directed bispecific T cell engager therapies. Annals of Hematology, 2020, 99, 2215-2229.	0.8	29
128	Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet, The, 2020, 396, 1885-1894.	6.3	206
129	Prognostic impact of complete remission with MRD negativity in patients with relapsed or refractory AML. Blood Advances, 2020, 4, 6117-6126.	2.5	29
130	Prognostic and therapeutic impacts of mutant <i>TP53</i> variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Advances, 2020, 4, 5681-5689.	2.5	105
131	Impact of <scp><i>CD33</i></scp> and <scp><i>ABCB1</i></scp> single nucleotide polymorphisms in patients with acute myeloid leukemia and advanced myeloid malignancies treated with decitabine plus gemtuzumab ozogamicin. American Journal of Hematology, 2020, 95, E225-E228.	2.0	9
132	Recent Advances in Managing Acute Lymphoblastic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, 330-342.	1.8	40
133	Characteristics and outcomes of patients with therapy-related acute myeloid leukemia with normal karyotype. Blood Cancer Journal, 2020, 10, 47.	2.8	17
134	Impact of salvage treatment phase on inotuzumab ozogamicin treatment for relapsed/refractory acute lymphoblastic leukemia: an update from the INO-VATE final study database. Leukemia and Lymphoma, 2020, 61, 2012-2015.	0.6	10
135	Ultra-accurate Duplex Sequencing for the assessment of pretreatment ABL1 kinase domain mutations in Ph+ ALL. Blood Cancer Journal, 2020, 10, 61.	2.8	20
136	Salvage Therapy Outcomes in a Historical Cohort of Patients With Relapsed or Refractory Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e871-e882.	0.2	10
137	Impact of TKIs post–allogeneic hematopoietic cell transplantation in Philadelphia chromosome–positive ALL. Blood, 2020, 136, 1786-1789.	0.6	40
138	Outcome of adults with relapsed/refractory T ell acute lymphoblastic leukemia or lymphoblastic lymphoma. American Journal of Hematology, 2020, 95, E245-E247.	2.0	16
139	Nucleophosmin 1 Mutations in Acute Myeloid Leukemia. Genes, 2020, 11, 649.	1.0	29
140	Cilteritinib in the treatment of relapsed and refractory acute myeloid leukemia with a FLT3 mutation. Therapeutic Advances in Hematology, 2020, 11, 204062072093061.	1.1	10
141	Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions. Journal of Hematology and Oncology, 2020, 13, 70.	6.9	100
142	Evaluation and management of measurable residual disease in acute lymphoblastic leukemia. Therapeutic Advances in Hematology, 2020, 11, 204062072091002.	1.1	25
143	Phase 2 study of hyper MAD with liposomal vincristine for patients with newly diagnosed acute lymphoblastic leukemia. American Journal of Hematology, 2020, 95, 734-739.	2.0	10
144	A phase 1/2 study of ruxolitinib and decitabine in patients with post-myeloproliferative neoplasm acute myeloid leukemia. Leukemia, 2020, 34, 2489-2492.	3.3	37

#	Article	IF	CITATIONS
145	<p>Blinatumomab for the Treatment of Adult B-Cell Acute Lymphoblastic Leukemia: Toward a New Era of Targeted Immunotherapy</p> . Biologics: Targets and Therapy, 2020, Volume 14, 23-34.	3.0	23
146	Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. American Journal of Hematology, 2020, 95, 612-622.	2.0	51
147	Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discovery, 2020, 10, 506-525.	7.7	212
148	Thirtyâ€ŧhree years later: Two distinct cases of acute lymphoblastic leukemia in one patient. American Journal of Hematology, 2020, 95, 1117-1120.	2.0	0
149	Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. American Journal of Hematology, 2020, 95, 691-709.	2.0	229
150	Targeted next-generation sequencing of circulating cell-free DNA vs bone marrow in patients with acute myeloid leukemia. Blood Advances, 2020, 4, 1670-1677.	2.5	24
151	Venetoclax and BCR-ABL Tyrosine Kinase Inhibitor Combinations: Outcome in Patients with Philadelphia Chromosome-Positive Advanced Myeloid Leukemias. Acta Haematologica, 2020, 143, 567-573.	0.7	53
152	Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Advances, 2020, 4, 482-495.	2.5	86
153	Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Advances, 2020, 4, 1311-1320.	2.5	106
154	Clinical practice recommendation on hematopoietic stem cell transplantation for acute myeloid leukemia patients with <i>FLT3</i> -internal tandem duplication: a position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica, 2020, 105, 1507-1516.	1.7	91
155	Interim Analysis of the Phase 1b/2 Study of the BCL-2 Inhibitor Venetoclax in Combination with Standard Intensive AML Induction/Consolidation Therapy with FLAG-IDA in Patients with Newly Diagnosed or Relapsed/Refractory AML. Blood, 2020, 136, 18-20.	0.6	17
156	Interim Results of the Phase I/II Study of the Ponatinib, Venetoclax and Dexamethasone for Patients with Relapsed or Refractory Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood, 2020, 136, 11-12.	0.6	4
157	Frontline HCVAD with Nelarabine and Peg-Asparaginase in T-Acute Lymphoblastic Leukemia (T-ALL) and T-Lymphoblastic Lymphoma (T-LBL): Updated Results of a Phase II Trial. Blood, 2020, 136, 36-39.	0.6	4
158	A Randomized Phase 2 Study of Pevonedistat, Venetoclax, and Azacitidine Versus Venetoclax Plus Azacitidine in Adults with Newly Diagnosed Acute Myeloid Leukemia (AML) Who Are Unfit for Intensive Chemotherapy. Blood, 2020, 136, 34-35.	0.6	3
159	Venetoclax, FLT3 Inhibitor and Decitabine in FLT3mut Acute Myeloid Leukemia: Subgroup Analysis of a Phase II Trial. Blood, 2020, 136, 53-55.	0.6	8
160	Ten-Day Decitabine with Venetoclax Versus Intensive Chemotherapy in Relapsed or Refractory Acute Myeloid Leukemia: A Propensity Score Matched Analysis. Blood, 2020, 136, 30-33.	0.6	3
161	Hyper-CVAD and Sequential Blinatumomab in Adults with Newly Diagnosed Philadelphia Chromosome-Negative B-Cell Acute Lymphoblastic Leukemia: Results from a Phase II Study. Blood, 2020, 136, 9-11.	0.6	13
162	Reduced-Intensity Chemotherapy with Mini-Hyper-CVD Plus Inotuzumab Ozogamicin, with or without Blinatumomab, in Older Adults with Newly Diagnosed Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia: Results from a Phase II Study. Blood, 2020, 136, 15-17.	0.6	14

#	Article	IF	CITATIONS
163	Prognostic Value of Measurable Residual Disease after Venetoclax and Decitabine in Acute Myeloid Leukemia. Blood, 2020, 136, 22-25.	0.6	2
164	Outcomes of Chronic Myelomonocytic Leukemia (CMML) after Hypomethylating Agent (HMA) Failure. Blood, 2020, 136, 22-23.	0.6	2
165	Outcomes of TP53-Mutant Acute Myeloid Leukemia with Venetoclax and Decitabine. Blood, 2020, 136, 33-36.	0.6	12
166	Outcome of Patients with T-Cell Acute Lymphoblastic Leukemia/Lymphoma with Early T-Cell Precursor-like Immunophenotype with Strong CD5 Expression. Blood, 2020, 136, 38-40.	0.6	1
167	Cladribine, Idarubicin, Cytarabine (ara-C), and Venetoclax in Treating Patients with Acute Myeloid Leukemia and High-Risk Myelodysplastic Syndrome. Blood, 2020, 136, 7-9.	0.6	5
168	Allogeneic Hematopoietic Stem Cell Transplant Versus No Transplant in Adult Patients with Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia in First Complete Remission and Complete Molecular Remission. Blood, 2020, 136, 46-48.	0.6	3
169	The Addition of Venetoclax to Ibrutinib Achieves a High Rate of Undetectable Minimal Residual Disease in Patients with High-Risk CLL. Blood, 2020, 136, 28-29.	0.6	6
170	Ultrasensitive Next-Generation Sequencing-Based Measurable Residual Disease Assessment in Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia after Frontline Therapy: Correlation with Flow Cytometry and Impact on Clinical Outcomes. Blood, 2020, 136, 26-28.	0.6	5
171	Phase II Study of CPX-351 Plus Venetoclax in Patients with Acute Myeloid Leukemia (AML). Blood, 2020, 136, 20-22.	0.6	8
172	Phase II Study of Venetoclax Added to Cladribine + Low Dose AraC (LDAC) Alternating with 5-Azacytidine Demonstrates High Rates of Minimal Residual Disease (MRD) Negative Complete Remissions (CR) and Excellent Tolerability in Older Patients with Newly Diagnosed Acute Myeloid Leukemia (AML). Blood, 2020, 136, 17-19.	0.6	10
173	Response and Survival Outcomes with Hypomethylating Agents in Patients with Chronic Myelomonocytic Leukemia Based on Disease Phenotype and Risk Categories. Blood, 2020, 136, 8-9.	0.6	1
174	Quizartinib with Decitabine +/- Venetoclax Is Highly Active in Patients (Pts) with FLT3-ITD Mutated (mut) Acute Myeloid Leukemia (AML): Clinical Report and Signaling Cytof Profiling from a Phase IB/II Trial. Blood, 2020, 136, 19-20.	0.6	18
175	Outcomes with Sequential FLT3-Inhibitor (FLT3i) Based Therapies in Patients (pts) with FLT3-Mutated Acute Myeloid Leukemia (AML) Exposed to Prior FLT3i Based Therapies. Blood, 2020, 136, 22-24.	0.6	2
176	Interim Results of an Open-Label Phase IB/II Multi-Arm Study of OX40 Agonist Monoclonal Antibody (mAb), Anti-PDL1 Mab, Smoothened Inhibitor, Anti-CD33 Mab, Bcl-2 Inhibitor, and Azacitidine As Single-Agents and As Combinations for Relapsed/Refractory Acute Myeloid Leukemia. Blood, 2020, 136, 21-23.	0.6	0
177	Long-Term Follow-up of the Combination of Low-Intensity Chemotherapy Plus Inotuzumab Ozogamicin with or without Blinatumomab in Patients with Relapsed-Refractory Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia: A Phase 2 Trial. Blood, 2020, 136, 40-42.	0.6	0
178	Clinicopathologic Correlates and Natural History of Atypical Chronic Myeloid Leukemia. Blood, 2020, 136, 54-56.	0.6	0
179	Prognostic Impact of Measurable Residual Disease on Survival in Acute Myeloid Leukemia: A Meta-Analysis of 81 Studies. Blood, 2020, 136, 16-17.	0.6	0
180	Prognostic Significance of Genetic Alterations in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Treated with Hyper-CVAD Plus Dasatinib or Hyper-CVAD Plus Ponatinib. Blood, 2020, 136, 40-41.	0.6	2

#	Article	IF	CITATIONS
181	Outcome of Patients with Chronic Myeloid Leukemia in Lymphoid Blast Crisis (CML-LBC) and Philadelphia Chromosome (Ph)-Positive Acute Lymphoblastic Leukemia (ALL) Treated with Hyper-CVAD and Dasatinib. Blood, 2020, 136, 46-48.	0.6	Ο
182	Evolutionary Action Score Identifies a Subset of TP53 Mutated Myelodysplastic Syndrome with Favorable Prognosis. Blood, 2020, 136, 4-5.	0.6	0
183	A Prognostic Model for Survival in Patients with Relapsed/Refractory Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia on the Combination of Low-Intensity Chemotherapy Plus Inotuzumab Ozogamicin with or without Blinatumomab. Blood, 2020, 136, 2-4.	0.6	Ο
184	Comparison of Hyper-CVAD Plus Ofatumumab to Hyper-CVAD Plus Rituximab in Patients with Newly Diagnosed Philadelphia Chromosome-Negative CD20-Positive B-Cell Acute Lymphoblastic Leukemia: A Propensity Score Analysis. Blood, 2020, 136, 42-43.	0.6	0
185	Roleof Allogeneic Stem Cell Transplant (ASCT) in Patients (Pts) with Relapsed/Refractory (R-R) Acute Lymphoblastic Leukemia (ALL) Treated with Inotuzumab Ozogamicin (INO) in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) with or without Blinatumomab (Blina): Results from a Phase 2 Study. Blood. 2020. 136. 39-41.	0.6	Ο
186	Clinical Course, Outcomes and Genetic Characterization of Patients with Isolated Myeloid Sarcoma. Blood, 2020, 136, 25-26.	0.6	0
187	Development of <i>TP53</i> Mutations over the Course of Acute Myeloid Leukemia Therapy. Blood, 2020, 136, 28-29.	0.6	Ο
188	Distinct Prognostic Effects of TP53 Mutations in Newly Diagnosed Versus Relapsed/Refractory (R-R) Patients (pts) with B-Acute Lymphoblastic Leukemia (ALL) Treated with Mini-Hcvd-Inotuzumab Ozogamicin with or without Blinatumomab Regimens. Blood, 2020, 136, 41-43.	0.6	0
189	Urgent Cytoreductive Chemotherapy for Newly Diagnosed Patients with AML Is Safe and Feasible and Facilitates Enrollment on Investigational Clinical Trials. Blood, 2020, 136, 2-4.	0.6	2
190	Long-Term Outcome of Low-Dose Hypomethylating Agents in Lower-Risk Myelodysplastic Syndromes: A Randomized Phase 2 Study. Blood, 2020, 136, 46-47.	0.6	0
191	Outcomes of <i>De Novo</i> Acute Myeloid Leukemia with Monocytic Differentiation (FAB M4/5) Treated with Venetoclax and Decitabine. Blood, 2020, 136, 11-13.	0.6	3
192	AZA + Glutaminase Inhibition with Telaglenastat (CB-839) for Advanced MDS: An Updated Interim Analysis. Blood, 2020, 136, 31-32.	0.6	4
193	Clonal Hematopoiesis and Its Implications for Flow Cytometric Assessment of Measurable Residual Disease in Patients with NPM1-mutated Acute Myeloid Leukemia. Blood, 2020, 136, 38-39.	0.6	1
194	Impact of Cytogenetic Abnormalities (CA) on Outcome of Patients (Pts) with Relapsed/Refractory (R-R) Acute Lymphoblastic Leukemia (ALL) Treated with Inotuzumab Ozogamicin (INO) in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) with or without Blinatumomab: Results from a Phase 2 Study. Blood, 2020, 136, 45-47.	0.6	0
195	Sequential Combination of Inotuzumab Ozogamicin (InO) with Low-Intensity Chemotherapy (mini-hyper-CVD) with or without Blinatumomab (Blina) As Salvage Therapy for Patients (Pts) with Acute Lymphoblastic Leukemia (ALL) in First Relapse. Blood, 2020, 136, 36-38.	0.6	ο
196	Azacitidine (AZA) with Nivolumab (Nivo), and AZA with Nivo + Ipilimumab (Ipi) in Relapsed/Refractory (R/R) Acute Myeloid Leukemia: Clinical and Immune Biomarkers of Response. Blood, 2020, 136, 43-45.	0.6	10
197	Risk Factors Associated with 30-Day Unplanned Readmissions for Adult Acute Lymphoblastic Leukemia (ALL). Blood, 2020, 136, 3-4.	0.6	0
198	Prognostic and Therapeutic Implications of Mutant TP53 Variant Allelic Frequency in Adults with Newly Diagnosed TP53-Mutated Acute Myeloid Leukemia. Blood, 2020, 136, 33-34.	0.6	0

#	Article	IF	CITATIONS
199	CD22 Expression Level As a Predictor of Survival in Patients (Pts) with Relapsed/Refractory (R-R) Acute Lymphoblastic Leukemia (ALL) Treated with Inotuzumab Ozogamicin (INO) in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) with or without Blinatumomab: Results from a Phase 2 Study. Blood, 2020, 136, 23-25.	0.6	1
200	Sorafenib plus intensive chemotherapy improves survival in patients with newly diagnosed, FLT3â€internal tandem duplication mutation–positive acute myeloid leukemia. Cancer, 2019, 125, 3755-3766.	2.0	38
201	How close are we to incorporating measurable residual disease into clinical practice for acute myeloid leukemia?. Haematologica, 2019, 104, 1532-1541.	1.7	37
202	Philadelphia chromosomeâ€positive acute lymphoblastic leukemia at first relapse in the era of tyrosine kinase inhibitors. American Journal of Hematology, 2019, 94, 1388-1395.	2.0	26
203	Prognostic Impact of Full Hematologic Recovery and Achievement of Measurable Residual Disease (MRD) Negativity in Patients with Relapsed or Refractory (R/R) Acute Myeloid Leukemia (AML) After First Salvage Therapy. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S218-S219.	0.2	0
204	Haploidentical transplantation for acute myeloid leukemia patients with minimal/measurable residual disease at transplantation. American Journal of Hematology, 2019, 94, 1382-1387.	2.0	20
205	Inotuzumab Ozogamicin Combined with Low-Intensity, with or without Blinatumomab vs. Intensive Therapy for Older Patients with Newly Diagnosed Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia: A Propensity Score Analysis. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19. S181.	0.2	0
206	Reduced-Intensity Chemotherapy Plus Inotuzumab Ozogamicin, With or Without Sequential Blinatumomab, is Highly Effective as First Salvage Treatment in Patients with Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S186-S187.	0.2	0
207	The Impact of Smoking on Relapse and Survival in Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia Treated with the Combination of Intensive Therapy with Tyrosine Kinase Inhibitor. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S180.	0.2	0
208	Dynamic Prediction of Outcome with Longitudinal BCR-ABL1 Levels in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S180-S181.	0.2	0
209	Hyper-CVAD Plus Ofatumumab as Frontline Therapy for Adults with CD20 Positive Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S185.	0.2	0
210	Duplex Sequencing Identifies Low Level ABL1 Kinase Domain Mutations in Untreated Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S186.	0.2	0
211	The Early Achievement of Measurable Residual Disease Negativity in the Treatment of Adults with Philadelphia-Negative B-Cell Acute Lymphoblastic Leukemia is a Strong Predictor for Survival. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S193-S194.	0.2	1
212	Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Current Treatment Options in Oncology, 2019, 20, 4.	1.3	50
213	Novel monoclonal antibody-based treatment strategies in adults with acute lymphoblastic leukemia. Therapeutic Advances in Hematology, 2019, 10, 204062071984949.	1.1	18
214	Ibrutinib and Venetoclax for First-Line Treatment of CLL. New England Journal of Medicine, 2019, 380, 2095-2103.	13.9	388
215	Prognostic significance of baseline <i>FLT3</i> â€ITD mutant allele level in acute myeloid leukemia treated with intensive chemotherapy with/without sorafenib. American Journal of Hematology, 2019, 94, 984-991.	2.0	32
216	10-day vs 5-day decitabine: equivalence cannot be concluded – Authors' reply. Lancet Haematology,the, 2019, 6, e178.	2.2	4

#	Article	IF	CITATIONS
217	Inotuzumab ozogamicin in combination with lowâ€intensity chemotherapy (miniâ€HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosomeâ€negative acute lymphoblastic leukemia: A propensity score analvsis. Cancer, 2019, 125, 2579-2586.	2.0	63
218	NPM1mutant variant allele frequency correlates with leukemia burden but does not provide prognostic information inNPM1â€mutated acute myeloid leukemia. American Journal of Hematology, 2019, 94, E158-E160.	2.0	17
219	Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and longâ€ŧerm survival followâ€up from the randomized, phase 3 INOâ€VATE study. Cancer, 2019, 125, 2474-2487.	2.0	210
220	Clonal hematopoiesis of indeterminate potential–associated mutations and risk of comorbidities in patients with myelodysplastic syndrome. Cancer, 2019, 125, 2233-2241.	2.0	19
221	Recent Advances in Adult Acute Lymphoblastic Leukemia. Current Hematologic Malignancy Reports, 2019, 14, 106-118.	1.2	21
222	Intensive chemotherapy is more effective than hypomethylating agents for the treatment of younger patients with myelodysplastic syndrome and elevated bone marrow blasts. American Journal of Hematology, 2019, 94, E188-E190.	2.0	4
223	Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Therapeutic Advances in Hematology, 2019, 10, 204062071982731.	1.1	93
224	Treatment with a 5-day versus a 10-day schedule of decitabine in older patients with newly diagnosed acute myeloid leukaemia: a randomised phase 2 trial. Lancet Haematology,the, 2019, 6, e29-e37.	2.2	84
225	Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study. Cancer Discovery, 2019, 9, 370-383.	7.7	380
226	Distinguishing thymoma from T-lymphoblastic leukaemia/lymphoma: a case-based evaluation. Journal of Clinical Pathology, 2019, 72, 251-257.	1.0	15
227	Tyrosine kinase inhibitor discontinuation in patients with chronic myeloid leukemia: a single-institution experience. Journal of Hematology and Oncology, 2019, 12, 1.	6.9	257
228	Late relapse in acute myeloid leukemia (AML): clonal evolution or therapy-related leukemia?. Blood Cancer Journal, 2019, 9, 7.	2.8	64
229	Prognostic implications of cytogenetics in adults with acute lymphoblastic leukemia treated with inotuzumab ozogamicin. American Journal of Hematology, 2019, 94, 408-416.	2.0	11
230	Recommendations for the assessment and management of measurable residual disease in adults with acute lymphoblastic leukemia: A consensus of North American experts. American Journal of Hematology, 2019, 94, 257-265.	2.0	99
231	A phase II study of omacetaxine mepesuccinate for patients with higherâ€risk myelodysplastic syndrome and chronic myelomonocytic leukemia after failure of hypomethylating agents. American Journal of Hematology, 2019, 94, 74-79.	2.0	10
232	Validation of the 2017 European LeukemiaNet classification for acute myeloid leukemia with <i>NPM1 </i> and <i>FLT3</i> â€internal tandem duplication genotypes. Cancer, 2019, 125, 1091-1100.	2.0	50
233	Acquired amegakaryocytic thrombocytopenia and red cell aplasia in a patient with thymoma progressing to aplastic anemia successfully treated with allogenic stem cell transplantation. Hematology/ Oncology and Stem Cell Therapy, 2019, 12, 115-118.	0.6	14
234	Efficacy and Safety Outcomes in the Phase 3 INO-Vate Trial By Baseline CD22 Positivity Assessed By Local Laboratories. Blood, 2019, 134, 1344-1344.	0.6	3

#	Article	IF	CITATIONS
235	Venetoclax Combined with Cladribine + Low Dose AraC (LDAC) Alternating with 5-Azacytidine Produces High Rates of Minimal Residual Disease (MRD) Negative Complete Remissions (CR) in Older Patients with Newly Diagnosed Acute Myeloid Leukemia (AML). Blood, 2019, 134, 2647-2647.	0.6	11
236	Achievement of Complete Remission (CR) with Measurable Residual Disease (MRD) Negativity Is Highly Prognostic in Patients (pts) with Relapsed or Refractory (R/R) Acute Myeloid Leukemia (AML) Receiving First Salvage Chemotherapy. Blood, 2019, 134, 735-735.	0.6	2
237	Value of Minimal Residual Disease (MRD) Monitoring Using Real-Time Quantitative PCR in Patients with Acute Promyelocytic Leukemia (APL) Treated with ATRA, ATO, +/- GO. Blood, 2019, 134, 3851-3851.	0.6	3
238	Sequencing of Circulating Cell-Free DNA in Patients with AML Detects Clinically Significant Mutations Not Detected in Bone Marrow: The Role for Complementary Peripheral Blood and Bone Marrow Genomic Analysis. Blood, 2019, 134, 2592-2592.	0.6	1
239	Updated Results of a Phase II Study of Reduced-Intensity Chemotherapy with Mini-Hyper-CVD in Combination with Inotuzumab Ozogamicin, with or without Blinatumomab, in Older Adults with Newly Diagnosed Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia. Blood, 2019, 134, 823-823.	0.6	12
240	Long-Term Safety and Efficacy of Hyper-CVAD Plus Ponatinib As Frontline Therapy for Adults with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood, 2019, 134, 283-283.	0.6	34
241	Fludarabine, Cytarabine, G-CSF and Gemtuzumab Ozogamicin (FLAG-GO) Regimen Results in Better Molecular Response and Relapse-Free Survival in Core Binding Factor Acute Myeloid Leukemia Than FLAG and Idarubicin (FLAG-Ida). Blood, 2019, 134, 290-290.	0.6	19
242	Inotuzumab Ozogamicin (Ino) May Overcome the Impact of Philadelphia Chromosome (Ph)-like Phenotype in Adult Patients (pts) with Relapsed/Refractory (R/R) Acute Lymphoblastic Leukemia (ALL). Blood, 2019, 134, 1641-1641.	0.6	11
243	Safety and Efficacy of Venetoclax in Combination with Navitoclax in Adult and Pediatric Relapsed/Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Blood, 2019, 134, 285-285.	0.6	24
244	Activity of Multiple Targetable Therapies in FLT3-Mutated (mu) Acute Myeloid Leukemia (AML) Patients (pts) with Concurrent Isocitrate Dehydrogenase Mutation (IDHm). Blood, 2019, 134, 1447-1447.	0.6	1
245	Discontinuation of Tyrosine Kinase Inhibitors (TKIs) in Philadelphia Chromosome-Positive (Ph+) Acute Lymphoblastic Leukemia (ALL). Blood, 2019, 134, 3819-3819.	0.6	5
246	Ten-Day Decitabine with Venetoclax (DEC10-VEN) in Acute Myeloid Leukemia: Updated Results of a Phase II Trial. Blood, 2019, 134, 2637-2637.	0.6	15
247	Outcomes in Molecular Subgroups and Resistance Patterns with Ten-Day Decitabine and Venetoclax (DEC10-VEN) in Acute Myeloid Leukemia. Blood, 2019, 134, 645-645.	0.6	9
248	Single-Cell Mass Cytometry Identifies Mechanisms of Resistance to Immunotherapy in AML. Blood, 2019, 134, 1428-1428.	0.6	5
249	Prognostic Factors for Progression in Patients (pts) with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia (Ph+ALL) in Complete Molecular Response (CMR) within 3 Months of Therapy with Tyrosine Kinase Inhibitors (TKIs). Blood, 2019, 134, 1296-1296.	0.6	4
250	Outcomes of Relapsed or Refractory Acute Myeloid Leukemia after Frontline Hypomethylating Agent with Venetoclax Regimens. Blood, 2019, 134, 738-738.	0.6	3
251	Sequential Combination of Inotuzumab Ozogamicin (InO) with Low-Intensity Chemotherapy (Mini-hyper-CVD) with or without Blinatumomab Is Highly Effective in Patients (pts) with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia (ALL) in First Relapse. Blood, 2019, 134, 3806-3806.	0.6	11
252	Long-Term Follow up of a Randomized Phase 2 Study of Low-Dose Decitabine Versus Low-Dose Azacitidine in Lower-Risk Myelodysplastic Syndromes. Blood, 2019, 134, 1715-1715.	0.6	2

#	Article	IF	CITATIONS
253	Updated Results from the Phase II Study of Hyper-CVAD in Sequential Combination with Blinatumomab in Newly Diagnosed Adults with B-Cell Acute Lymphoblastic Leukemia (B-ALL). Blood, 2019, 134, 3807-3807.	0.6	21
254	A Multicenter Phase I Study Combining Venetoclax with Mini-Hyper-CVD in Older Adults with Untreated and Relapsed/Refractory Acute Lymphoblastic Leukemia. Blood, 2019, 134, 3867-3867.	0.6	30
255	Phase II Study of Blinatumomab in Patients with B-Cell Acute Lymphoblastic Leukemia (B-ALL) with Positive Measurable Residual Disease (MRD). Blood, 2019, 134, 1299-1299.	0.6	4
256	Title: 12 Versus 8 Prophylactic Intrathecal (IT) Chemotherapy Administration Decrease Incidence of Central Nervous System (CNS) Relapse in Patients (pts) with Newly Diagnosed Philadelphia (Ph)-Positive Acute Lymphocytic Leukemia (ALL). Blood, 2019, 134, 3810-3810.	0.6	9
257	Characteristics and Clinical Outcomes of Patients with Acute Lymphoblastic Leukemia with KMT2A (MLL) Rearrangement. Blood, 2019, 134, 2582-2582.	0.6	2
258	Outcome of Patients (Pts) with Philadelphia Chromosome-Positive (Ph+) Acute Lymphoblastic Leukemia (ALL) without 3-Month Complete Molecular Response (CMR). Blood, 2019, 134, 287-287.	0.6	0
259	The Early Achievement of Measurable Residual Disease Negativity in the Treatment of Adults with Philadelphia-Negative B-Cell Acute Lymphoblastic Leukemia Is a Strong Predictor for Survival. Blood, 2019, 134, 1297-1297.	0.6	0
260	Prognostic Significance of IKZF1, PAX5, and CDKN2A Deletions in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Treated with Hyper-CVAD/MA with Dasatinib or Ponatinib. Blood, 2019, 134, 2753-2753.	0.6	0
261	Phase II Study of the Hyper-CVAD Regimen in Combination with Ofatumumab (HCVAD-O) As Frontline Therapy for Adult Patients (pts) with CD20-Positive B-Cell Acute Lymphoblastic Leukemia (B-ALL). Blood, 2019, 134, 2577-2577.	0.6	3
262	The Impact of Smoking on Survival in Patients (Pts) with Newly Diagnosed Philadelphia Chromosome Positive (Ph+) Acute Lymphoblastic Leukemia (ALL) Treated with the Combination of Intensive Therapy with Tyrosine Kinase Inhibitor (TKI). Blood, 2019, 134, 3815-3815.	0.6	0
263	Early Intervention with Hypomethylating Agents in Transfusion-Independent Patients with Myelodysplastic Syndrome. Blood, 2019, 134, 4252-4252.	0.6	0
264	Characteristics and Outcomes of Therapy-Related Versus De Novo Acute Myeloid Leukemia with Normal Karyotype. Blood, 2019, 134, 3834-3834.	0.6	0
265	Characterization of Changes in the T-Cell Receptor Repertoire in Patients with Acute Myeloid Leukemia with Durable Remission Following Allogeneic Stem Cell Transplant. Blood, 2019, 134, 5186-5186.	0.6	0
266	Ultra-Accurate Assessment of Pretreatment ABL1 Kinase Domain (KD) Mutations in Patients (pts) with Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia (Ph+ ALL) Using Duplex Sequencing (DS). Blood, 2019, 134, 2578-2578.	0.6	1
267	Results of second salvage therapy in 673 adults with acute myelogenous leukemia treated at a single institution since 2000. Cancer, 2018, 124, 2534-2540.	2.0	23
268	"Society of Hematologic Oncology (SOHO) State of the Art Updates and Next Questionsâ€â€"Treatment of ALL. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 301-310.	0.2	6
269	Efficacy of Ponatinib Versus Earlier Generation Tyrosine Kinase Inhibitors for Front-line Treatment of Newly Diagnosed Philadelphia-positive Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 257-265.	0.2	39
270	Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncology, The, 2018, 19, 240-248.	5.1	192

#	Article	IF	CITATIONS
271	Novel Therapies for Older Adults With Acute Lymphoblastic Leukemia. Current Hematologic Malignancy Reports, 2018, 13, 91-99.	1.2	15
272	Therapeutic choices after hypomethylating agent resistance for myelodysplastic syndromes. Current Opinion in Hematology, 2018, 25, 146-153.	1.2	22
273	Association of bone marrow fibrosis with inferior survival outcomes in chronic myelomonocytic leukemia. Annals of Hematology, 2018, 97, 1183-1191.	0.8	12
274	A phase I study of moxetumomab pasudotox in adults with relapsed or refractory B ell acute lymphoblastic leukaemia. British Journal of Haematology, 2018, 182, 442-444.	1.2	11
275	A phase I/II randomized trial of clofarabine or fludarabine added to idarubicin and cytarabine for adults with relapsed or refractory acute myeloid leukemia. Leukemia and Lymphoma, 2018, 59, 813-820.	0.6	16
276	Hyper VAD plus nelarabine in newly diagnosed adult Tâ€cell acute lymphoblastic leukemia and Tâ€lymphoblastic lymphoma. American Journal of Hematology, 2018, 93, 91-99.	2.0	74
277	First-line therapy for chronic phase CML: selecting the optimal BCR-ABL1-targeted TKI. Leukemia and Lymphoma, 2018, 59, 1523-1538.	0.6	27
278	Current paradigms in the management of <scp>P</scp> hiladelphia chromosome positive acute lymphoblastic leukemia in adults. American Journal of Hematology, 2018, 93, 286-295.	2.0	38
279	Salvage Chemoimmunotherapy With Inotuzumab Ozogamicin Combined With Mini–Hyper-CVD for Patients With Relapsed or Refractory Philadelphia Chromosome–Negative Acute Lymphoblastic Leukemia. JAMA Oncology, 2018, 4, 230.	3.4	124
280	Outcome of patients with relapsed/refractory acute lymphoblastic leukemia after blinatumomab failure: No change in the level of CD19 expression. American Journal of Hematology, 2018, 93, 371-374.	2.0	68
281	Clinical experience with the <scp>BCL</scp> 2â€inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. American Journal of Hematology, 2018, 93, 401-407.	2.0	336
282	Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2018, 36, 1788-1797.	0.8	156
283	Inotuzumab ozogamicin for the treatment of acute lymphoblastic leukemia. Therapeutic Advances in Hematology, 2018, 9, 347-356.	1.1	0
284	Incorporating Immunotherapy Into the Treatment Strategies of B-Cell Adult Acute Lymphoblastic Leukemia: The Role of Blinatumomab and Inotuzumab Ozogamicin. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 574-578.	1.8	17
285	Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematology,the, 2018, 5, e618-e627.	2.2	190
286	Chemoimmunotherapy with inotuzumab ozogamicin combined with miniâ€hyperâ€CVD, with or without blinatumomab, is highly effective in patients with Philadelphia chromosome–negative acute lymphoblastic leukemia in first salvage. Cancer, 2018, 124, 4044-4055.	2.0	88
287	Initial Report of a Phase I Study of LY2510924, Idarubicin, and Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia. Frontiers in Oncology, 2018, 8, 369.	1.3	25
288	Risk of Infection with Ibrutinib in Patients with Chronic Lymphocytic Leukemia: A Systematic Review and Meta-analysis of Phase III Randomized Controlled Trials. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, S215.	0.2	0

#	Article	IF	CITATIONS
289	Phase I study of ruxolitinib in previously treated patients with low or intermediate-1 risk myelodysplastic syndrome with evidence of NF-kB activation. Leukemia Research, 2018, 73, 78-85.	0.4	9
290	Infection with ibrutinib in patients with chronic lymphocytic leukemia: How strong is the association?. European Journal of Haematology, 2018, 101, 418-420.	1.1	5
291	SOHO State of the Art Update and Next Questions: Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 439-446.	0.2	20
292	Acute myeloid leukaemia. Lancet, The, 2018, 392, 593-606.	6.3	512
293	Sorafenib Combined with 5â€azacytidine in Older Patients with Untreated <i>FLT3</i> â€ITD Mutated Acute Myeloid Leukemia. American Journal of Hematology, 2018, 93, 1136-1141.	2.0	95
294	Cladribine and low-dose cytarabine alternating with decitabine as front-line therapy for elderly patients with acute myeloid leukaemia: a phase 2 single-arm trial. Lancet Haematology,the, 2018, 5, e411-e421.	2.2	66
295	Progress and Innovations in the Management of Adult Acute Lymphoblastic Leukemia. JAMA Oncology, 2018, 4, 1413.	3.4	69
296	Interim Analysis of Phase II Study of Venetoclax with 10-Day Decitabine (DEC10-VEN) in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood, 2018, 132, 286-286.	0.6	19
297	Chemoimmunotherapy with Inotuzumab Ozogamicin Combined with Mini-Hyper-CVD, with or without Blinatumomab, for Newly Diagnosed Older Patients with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia: Results from a Phase II Study. Blood, 2018, 132, 36-36.	0.6	12
298	Sequential Combination of Low-Intensity Chemotherapy (Mini-hyper-CVD) Plus Inotuzumab Ozogamicin with or without Blinatumomab in Patients with Relapsed/Refractory Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia (ALL): A Phase 2 Trial. Blood, 2018, 132, 553-553.	0.6	17
299	Inotuzumab Ozogamicin in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) Vs. Standard Intensive Chemotherapy (hyper-CVAD) As Frontline Therapy for Older Patients with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia (ALL): A Propensity Score Analysis. Blood, 2018, 132, 34-34.	0.6	4
300	Five-Day Versus Ten-Day Schedules of Decitabine in Older Patients with Newly Diagnosed Acute Myeloid Leukemia: Results of a Randomized Phase II Study. Blood, 2018, 132, 84-84.	0.6	6
301	Ultrasensitive Duplex Sequencing of Pretreatment ABL1 Kinase Domain Mutations in Patients with Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood, 2018, 132, 1548-1548.	0.6	2
302	Characteristics and Outcomes of Patients (pts) with Malignancy-Associated Hemophagocytic Lymphohistiocytosis (M-HLH) in Adults: A Single-Center, Prospective Analysis of 36 Pts. Blood, 2018, 132, 3689-3689.	0.6	1
303	Safety and Efficacy of Blinatumomab in Patients with Central Nervous System (CNS) Disease: A Single Institution Experience. Blood, 2018, 132, 2702-2702.	0.6	13
304	A Phase II Study of the Hyper-CVAD Regimen in Sequential Combination with Blinatumomab As Frontline Therapy for Adults with B-Cell Acute Lymphoblastic Leukemia (B-ALL). Blood, 2018, 132, 32-32.	0.6	14
305	Long Term Follow-up on Phase 2 Study on the Efficacy and Safety of Blinatumomab in Adult Patients with Relapsed Refractory B-Precursor Acute Lymphoblastic Leukemia. Blood, 2018, 132, 4017-4017.	0.6	5
306	Predictors of Outcomes in Patients with Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia at First Relapse in the Era of Tyrosine Kinase Inhibitors. Blood, 2018, 132, 2659-2659.	0.6	1

#	Article	IF	CITATIONS
307	Prognostic Significance of Baseline FLT3-ITD Mutant Allele Burden in Acute Myeloid Leukemia Treated with Intensive Chemotherapy with/without Sorafenib. Blood, 2018, 132, 3983-3983.	0.6	2
308	Outcomes with Subsequent FLT3-Inhibitor (FLT3i) Based Therapies in FLT3-Mutated (mu) Patients (pts) Refractory/Relapsed (R/R) to One or More Prior FLT3 Inhibitor Based Therapies: A Single Center Experience. Blood, 2018, 132, 663-663.	0.6	7
309	Phase II Study of Blinatumomab in Patients with B-Cell Lineage Acute Lymphocytic Leukemia with Positive Minimal/Measurable Residual Disease. Blood, 2018, 132, 5212-5212.	0.6	2
310	Impact of minimal residual disease (MRD) status in clinical outcomes of patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL) treated with inotuzumab ozogamicin (InO) in the phase 3 INO-VATE trial Journal of Clinical Oncology, 2018, 36, 7013-7013.	0.8	5
311	A phase 2 study of hyper-CVAD plus ofatumumab as frontline therapy in CD20+ acute lymphoblastic leukemia (ALL): Updated results Journal of Clinical Oncology, 2018, 36, 7041-7041.	0.8	12
312	Comparison of somatic mutations profiles from next-generation sequencing (NGS) of cell-free DNA (cfDNA) versus bone marrow (BM) in acute myeloid leukemia (AML) Journal of Clinical Oncology, 2018, 36, 7051-7051.	0.8	2
313	Omacetaxine mepesuccinate for patients with higher-risk MDS and CMML after failure of hypomethylating agents: A phase II clinical trial Journal of Clinical Oncology, 2018, 36, 7066-7066.	0.8	1
314	Intensive chemotherapy (IC) versus hypomethylating agents (HMA) for the treatment of younger patients with myelodysplastic syndrome (MDS) and elevated bone marrow blasts Journal of Clinical Oncology, 2018, 36, 7064-7064.	0.8	0
315	Association of early intervention in transfusion independent (TI) patients (Pts) with lower-risk myelodysplastic syndromes (MDS) treated with attenuated doses of hypomethylating agents (HMAs) with high response rates and long duration of response Journal of Clinical Oncology, 2018, 36, 7001-7001.	0.8	0
316	Clonal evolution in acute myeloid leukemia (AML): Relapse after a long remission period Journal of Clinical Oncology, 2018, 36, 7022-7022.	0.8	0
317	Validation of the ELN-2017 risk classification in younger adult patients (pts) with AML Journal of Clinical Oncology, 2018, 36, 7053-7053.	0.8	Ο
318	Imapct of Clonal Hematopoiesis of Indeterminate Potential (CHIP) Associated Mutations and Risk of Comorbidities in Patients with Myelodysplastic Syndrome. Blood, 2018, 132, 1814-1814.	0.6	0
319	Survivorship in AML - Outcomes of Acute Myelogenous Leukemia (AML) Patients (pts) after Maintaining Complete Remission (CR) for at Least 3 Years (yrs). Blood, 2018, 132, 3976-3976.	0.6	0
320	Salvage Therapy Outcomes in a Historical Cohort of Patients with Relapsed or Refractory Acute Myeloid Leukemia. Blood, 2018, 132, 3985-3985.	0.6	1
321	The Impact of Clonal Hematopoiesis of Indeterminate Potential on Survival in Patients with Newly Diagnosed Acute Myeloid Leukemia. Blood, 2018, 132, 4359-4359.	0.6	Ο
322	Risk of Atrial Fibrillation with Ibrutinib in Patients with B-Cell Malignancies: An Updated Meta-Analysis of Phase III Randomized Controlled Trials. Blood, 2018, 132, 1869-1869.	0.6	0
323	Smoking Confers Poor Survival in Patients (Pts) with Newly Diagnosed Philadelphia Chromosome Positive (Ph+) Acute Lymphoblastic Leukemia (ALL) Treated with the Combination of Intensive Therapy with Tyrosine Kinase Inhibitor (TKI). Blood, 2018, 132, 2664-2664.	0.6	0
324	Utility of Leucovorin Rescue in Patients with Acute Lymphoblastic Leukemia (ALL) Treated with the Mini-Hypercvd Regimen. Blood, 2018, 132, 1417-1417.	0.6	0

#	Article	IF	CITATIONS
325	Dynamic Personalized Assessment of Outcome in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood, 2018, 132, 2695-2695.	0.6	Ο
326	Risk of Infection with Ibrutinib in Patients with B-Cell Malignancies: A Meta-Analysis of Phase III Randomized Controlled Trials. Blood, 2018, 132, 2871-2871.	0.6	0
327	Philadelphia chromosome-positive acute lymphoblastic leukemia in adults: current treatments and future perspectives. Clinical Advances in Hematology and Oncology, 2018, 16, 216-223.	0.3	19
328	Impact of achievement of complete cytogenetic response on outcome in patients with myelodysplastic syndromes treated with hypomethylating agents. American Journal of Hematology, 2017, 92, 351-358.	2.0	13
329	Minimal Residual Disease in Acute Lymphoblastic Leukemia: How to Recognize and Treat It. Current Oncology Reports, 2017, 19, 6.	1.8	32
330	Quality and cost comparison of powered versus manual bone marrow biopsy devices in patients with myelofibrosis. Leukemia and Lymphoma, 2017, 58, 2508-2510.	0.6	4
331	Factors associated with risk of central nervous system relapse in patients with nonâ€core binding factor acute myeloid leukemia. American Journal of Hematology, 2017, 92, 924-928.	2.0	17
332	<i>TP53</i> mutation does not confer a poor outcome in adult patients with acute lymphoblastic leukemia who are treated with frontline hyper VADâ€based regimens. Cancer, 2017, 123, 3717-3724.	2.0	18
333	Outcomes of adults with relapsed or refractory Burkitt and highâ€grade Bâ€cell leukemia/lymphoma. American Journal of Hematology, 2017, 92, E114-E117.	2.0	32
334	Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood, 2017, 129, 572-581.	0.6	285
335	Poor outcomes associated with +der(22)t(9;22) and â^9/9p in patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia receiving chemotherapy plus a tyrosine kinase inhibitor. American Journal of Hematology, 2017, 92, 238-243.	2.0	41
336	Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood, 2017, 129, 1275-1283.	0.6	214
337	<scp>S</scp> ignificance of recurrence of minimal residual disease detected by multiâ€parameter flow cytometry in patients with acute lymphoblastic leukemia in morphological remission. American Journal of Hematology, 2017, 92, 279-285.	2.0	32
338	Relapse risk and survival in patients with FLT3 mutated acute myeloid leukemia undergoing stem cell transplantation. American Journal of Hematology, 2017, 92, 331-337.	2.0	39
339	Reply to ABCG2 overexpression and deoxyadenosine analogue activity in acute myeloid leukemia. Cancer, 2017, 123, 4935-4936.	2.0	1
340	Frontline Ofatumumab with Hyper-CVAD in CD20+ Acute Lymphoblastic Leukemia (ALL): Updated Results of a Phase II Trial. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S256-S257.	0.2	2
341	A Phase II Trial of Inotuzumab Ozogamicin Combined with Mini-HyperCVD as Salvage Therapy for Relapsed/Refractory ALL. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S264-S265.	0.2	0
342	Phase II study of hyper-CMAD with Liposomal Vincristine (Marqibo) for Patients with Newly Diagnosed Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S266.	0.2	0

#	Article	IF	CITATIONS
343	Safety and Efficacy of Blinatumomab in Combination with a Tyrosine Kinase Inhibitor for the Treatment of Relapsed Philadelphia Chromosome-Positive Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S265.	0.2	2
344	Frontline Inotuzumab Ozogamicin with Low-intensity Chemotherapy (mini-hyper-CVD) in Older Patients with Acute Lymphoblastic Leukemia (ALL): Updated Results of a Phase I/II Trial. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S255-S256.	0.2	0
345	Clonal chromosomal abnormalities appearing in Philadelphia chromosome–negative metaphases during CML treatment. Blood, 2017, 130, 2084-2091.	0.6	65
346	Safety and Efficacy of Blinatumomab in Combination With a Tyrosine Kinase Inhibitor for the Treatment of Relapsed Philadelphia Chromosome-positive Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 897-901.	0.2	127
347	Hyper-CVAD Plus Ponatinib as Frontline Therapy in Philadelphia Chromosome-Positive (Ph+) Acute Lymphoblastic Leukemia (ALL): Updated Results of a Phase II Trial. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S257-S258.	0.2	1
348	A Phase II Study of Arginine Deiminase (ADI-PEG20) in Relapsed/Refractory or Poor-Risk Acute Myeloid Leukemia Patients. Scientific Reports, 2017, 7, 11253.	1.6	52
349	Vosaroxin in combination with decitabine in newly diagnosed older patients with acute myeloid leukemia or high-risk myelodysplastic syndrome. Haematologica, 2017, 102, 1709-1717.	1.7	13
350	A randomized phase 2 study of idarubicin and cytarabine with clofarabine or fludarabine in patients with newly diagnosed acute myeloid leukemia. Cancer, 2017, 123, 4430-4439.	2.0	37
351	Randomized phase 2 study of low-dose decitabine vs low-dose azacitidine in lower-risk MDS and MDS/MPN. Blood, 2017, 130, 1514-1522.	0.6	151
352	Clinical characteristics and outcomes of previously untreated patients with adult onset Tâ€acute lymphoblastic leukemia and Tâ€lymphoblastic lymphoma with hyperâ€CVAD based regimens. American Journal of Hematology, 2017, 92, E595-E597.	2.0	8
353	Which tyrosine kinase inhibitor should we use to treat Philadelphia chromosome-positive acute lymphoblastic leukemia?. Best Practice and Research in Clinical Haematology, 2017, 30, 193-200.	0.7	27
354	Differential impact of minimal residual disease negativity according to the salvage status in patients with relapsed/refractory <scp>B</scp> â€cell acute lymphoblastic leukemia. Cancer, 2017, 123, 294-302.	2.0	70
355	Phase 2 study of lowâ€dose clofarabine plus cytarabine for patients with higherâ€risk myelodysplastic syndrome who have relapsed or are refractory to hypomethylating agents. Cancer, 2017, 123, 629-637.	2.0	31
356	Prognostic impact of pretreatment cytogenetics in adult <scp>P</scp> hiladelphia chromosome–negative acute lymphoblastic leukemia in the era of minimal residual disease. Cancer, 2017, 123, 459-467.	2.0	49
357	Persistence of minimal residual disease assessed by multiparameter flow cytometry is highly prognostic in younger patients with acute myeloid leukemia. Cancer, 2017, 123, 426-435.	2.0	63
358	Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Advances, 2017, 1, 1312-1323.	2.5	83
359	Frontline hyper-CVAD plus ponatinib for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Updated results of a phase II study Journal of Clinical Oncology, 2017, 35, 7013-7013.	0.8	18
360	Updated results of a phase I/II study of inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-hyper-CVD) as frontline therapy for older patients with acute lymphoblastic leukemia Journal of Clinical Oncology, 2017, 35, 7014-7014.	0.8	2

#	Article	IF	CITATIONS
361	Updated results of frontline ofatumumab-hyper-CVAD in adults with CD20+ acute lymphoblastic leukemia Journal of Clinical Oncology, 2017, 35, 7033-7033.	0.8	3
362	Idarubicin and cytarabine with clofarabine or fludarabine in adults with newly diagnosed acute myeloid leukemia: Updated results of a randomized phase II study Journal of Clinical Oncology, 2017, 35, 7037-7037.	0.8	0
363	Interactions and relevance of blast percentage and treatment strategy among younger and older patients with acute myeloid leukemia (<scp>AML</scp>) and myelodysplastic syndrome (<scp>MDS</scp>). American Journal of Hematology, 2016, 91, 227-232.	2.0	46
364	Prognostic impact of persistent cytogenetic abnormalities at complete remission in adult patients with acute lymphoblastic leukemia. American Journal of Hematology, 2016, 91, 385-389.	2.0	4
365	Indiscriminate Testing for Heparin-Induced Thrombocytopenia. JAMA Internal Medicine, 2016, 176, 592.	2.6	2
366	The safety and efficacy of vosaroxin in patients with first relapsed or refractory acute myeloid leukemia - a critical review. Expert Review of Hematology, 2016, 9, 529-534.	1.0	7
367	Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood, 2016, 127, 1863-1869.	0.6	253
368	Prognostic significance of day 14 bone marrow evaluation in adults with Philadelphia chromosome–negative acute lymphoblastic leukemia. Cancer, 2016, 122, 3812-3820.	2.0	17
369	Acute Myeloid Leukemia: Past, Present, and Prospects for the Future. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S25-S29.	0.2	28
370	Chronic myeloid leukemia: Firstâ€line drug of choice. American Journal of Hematology, 2016, 91, 59-66.	2.0	49
371	Peripheral blood blast clearance is an independent prognostic factor for survival and response to acute myeloid leukemia induction chemotherapy. American Journal of Hematology, 2016, 91, 1221-1226.	2.0	12
372	Hyperâ€CVAD plus ponatinib versus hyperâ€CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia: A propensity score analysis. Cancer, 2016, 122, 3650-3656.	2.0	156
373	Impact of complete molecular response on survival in patients with Philadelphia chromosome–positive acute lymphoblastic leukemia. Blood, 2016, 128, 504-507.	0.6	194
374	<i>TP53</i> mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer, 2016, 122, 3484-3491.	2.0	200
375	Minimal residual disease assessed by multiâ€parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. British Journal of Haematology, 2016, 172, 392-400.	1.2	102
376	Clofarabine Plus Low-Dose Cytarabine Is as Effective as and Less Toxic Than Intensive Chemotherapy in Elderly AML Patients. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 163-168.e2.	0.2	18
377	A Phase II Study of Coltuximab Ravtansine (SAR3419) Monotherapy in Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 139-145.	0.2	60
378	Phase II Study of the Salvage Mini-Hyper-CVD in Combination with Inotuzumab Ozogamicin (INO) for Adult Patients with Relapsed/Refractory (R/R) Acute Lymphoblastic Leukemia (ALL). Blood, 2016, 128, 1606-1606.	0.6	3

#	Article	IF	CITATIONS
379	Cladribine Combined with Idarubicin and Ara-C (CLIA) As a Frontline and Salvage Treatment for Young Patients (â‰@5 yrs) with Acute Myeloid Leukemia. Blood, 2016, 128, 1639-1639.	0.6	14
380	A Randomized Phase II Study of Low-Dose Decitabine Versus Azacitidine in Patients with Low- or Intermediate-1-Risk Myelodysplastic Syndromes: A Report on Behalf of the MDS Clinical Research Consortium. Blood, 2016, 128, 226-226.	0.6	3
381	Frontline Ofatumumab in Combination with Hyper-CVAD for Adult Patients with CD-20 Positive Acute Lymphoblastic Leukemia (ALL): Interim Result of a Phase II Clinical Trial. Blood, 2016, 128, 2783-2783.	0.6	6
382	Achievement of Minimal Residual Disease Negativity By Multiparameter Flow Cytometry Is an Important Therapeutic Endpoint in Patients with Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia Receiving Salvage Treatment. Blood, 2016, 128, 2916-2916.	0.6	1
383	Outcome of Patients with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia (ALL) By Age Group over 35 Years: A Single Institution Experience. Blood, 2016, 128, 3975-3975.	0.6	2
384	Inotuzumab Ozogamicin in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) As Frontline Therapy for Older Patients with Acute Lymphoblastic Leukemia (ALL): Interim Result of a Phase II Clinical Trial. Blood, 2016, 128, 588-588.	0.6	11
385	Phase II Study of the Frontline Hyper-CVAD in Combination with Ponatinib for Patients with Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia. Blood, 2016, 128, 757-757.	0.6	2
386	Crenolanib besylate, a type I pan-FLT3 inhibitor, to demonstrate clinical activity in multiply relapsed FLT3-ITD and D835 AML Journal of Clinical Oncology, 2016, 34, 7008-7008.	0.8	71
387	Propensity score analysis: Frontline therapy with hyper-CVAD (HCVAD) + ponatinib vs. HCVAD + dasatinib in patients (pts) with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2016, 34, 7025-7025.	0.8	1
388	Efficacy and safety of inotuzumab ozogamicin (InO) in older patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL) enrolled in the phase 3 INO-VATE trial Journal of Clinical Oncology, 2016, 34, 7029-7029.	0.8	3
389	Updated results from phase II study of combination of hyper-CVAD (HCVAD) with ponatinib in frontline therapy of patients (pts) with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2016, 34, 7036-7036.	0.8	3
390	Updated results from the phase II study of hyper-CVAD in combination with ofatumumab as frontline therapy for adults with CD20 positive (CD20+) acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2016, 34, 7042-7042.	0.8	1
391	Clinical implications of <i>TP53</i> mutations in myelodysplastic syndromes treated with hypomethylating agents. Oncotarget, 2016, 7, 14172-14187.	0.8	86
392	Prognostic impact of pre-treatment cytogenetics in adult acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2016, 34, 7038-7038.	0.8	0
393	Impact of complete molecular response (CMR) on survival in patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2016, 34, 7034-7034.	0.8	Ο
394	Quality and cost comparison of powered versus manual bone marrow biopsy devices at a large U.S. cancer center Journal of Clinical Oncology, 2016, 34, e18283-e18283.	0.8	0
395	Prognostic significance of day 14 (D14) bone marrow (BM) assessment in adult patients receiving induction for Philadelphia chromosome-negative (Ph-) acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2016, 34, 7035-7035.	0.8	0
396	Updated Results of a Randomized Phase II Trial of Idarubicin and Cytarabine with Clofarabine or Fludarabine in Patients with Newly Diagnosed Acute Myeloid Leukemia. Blood, 2016, 128, 1067-1067.	0.6	0

#	Article	IF	CITATIONS
397	Additional Chromosomal Abnormalities in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Treated with Tyrosine Kinase Inhibitors: Differential Outcomes According to Type of Chromosomal Abnormality. Blood, 2016, 128, 1737-1737.	0.6	0
398	Outcomes of Adult Patients with Relapsed/Refractory Burkitt or Burkitt-like Leukemia/Lymphoma. Blood, 2016, 128, 5150-5150.	0.6	0
399	Patterns of Relapse in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Who Achieve Complete Molecular Response with Chemotherapy Plus a Tyrosine Kinase Inhibitor. Blood, 2016, 128, 3977-3977.	0.6	0
400	A Phase II Trial of Omacetaxine Mepesuccinate for Patients with High-Risk Myelodysplastic Syndrome after Failure of Hypomethylating Agents. Blood, 2016, 128, 4328-4328.	0.6	0
401	Should treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia be intensive? Intensive treatment is the best treatment for these patients. Clinical Advances in Hematology and Oncology, 2016, 14, 892-894.	0.3	0
402	Prognostic factors for outcome in patients with refractory and relapsed acute lymphocytic leukemia treated with inotuzumab ozogamicin, a <scp>CD</scp> 22 monoclonal antibody. American Journal of Hematology, 2015, 90, 193-196.	2.0	35
403	Fludarabine, cyclophosphamide, and multipleâ€dose rituximab as frontline therapy for chronic lymphocytic leukemia. Cancer, 2015, 121, 3869-3876.	2.0	14
404	New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer, 2015, 121, 2517-2528.	2.0	200
405	Longâ€ŧerm followâ€up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with <scp>P</scp> hiladelphia chromosome–positive acute lymphoblastic leukemia. Cancer, 2015, 121, 4158-4164.	2.0	181
406	Monoclonal antibodies in acute lymphoblastic leukemia. Blood, 2015, 125, 4010-4016.	0.6	144
407	The clinical potential of inotuzumab ozogamicin in relapsed and refractory acute lymphocytic leukemia. Therapeutic Advances in Hematology, 2015, 6, 253-261.	1.1	25
408	Results of phase 2 randomized study of lowâ€dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia. Cancer, 2015, 121, 556-561.	2.0	122
409	Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica, 2015, 100, 653-661.	1.7	191
410	Vosaroxin plus cytarabine versus placebo plus cytarabine in patients with first relapsed or refractory acute myeloid leukaemia (VALOR): a randomised, controlled, double-blind, multinational, phase 3 study. Lancet Oncology, The, 2015, 16, 1025-1036.	5.1	129
411	Therapeutic benefit of decitabine, a hypomethylating agent, in patients with high-risk primary myelofibrosis and myeloproliferative neoplasm in accelerated or blastic/acute myeloid leukemia phase. Leukemia Research, 2015, 39, 950-956.	0.4	69
412	Long-term molecular and cytogenetic response and survival outcomes with imatinib 400 mg, imatinib 800 mg, dasatinib, and nilotinib in patients with chronic-phase chronic myeloid leukaemia: retrospective analysis of patient data from five clinical trials. Lancet Haematology,the, 2015, 2, e118-e128.	2.2	65
413	Final results of a phase 2 trial of clofarabine and lowâ€dose cytarabine alternating with decitabine in older patients with newly diagnosed acute myeloid leukemia. Cancer, 2015, 121, 2375-2382.	2.0	40
414	Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncology, The, 2015, 16, 1547-1555.	5.1	245

#	Article	IF	CITATIONS
415	Ponatinib as first-line treatment for patients with chronic myeloid leukaemia in chronic phase: a phase 2 study. Lancet Haematology,the, 2015, 2, e376-e383.	2.2	86
416	Myeloid neoplasms after breast cancer: "therapy-related―not an independent poor prognostic factor. Leukemia and Lymphoma, 2015, 56, 1012-1019.	0.6	16
417	Impact of Cytogenetic Abnormalities and Cytogenetic Response to Hypomethylating Agents (HMAs) in Patients (pts) with Lower Risk Myelodysplastic Syndromes (MDS). Blood, 2015, 126, 2877-2877.	0.6	1
418	Salvage Chemotherapy with Inotuzumab Ozogamicin (INO) Combined with Mini-Hyper-CVD for Adult Patients with Relapsed/Refractory (R/R) Acute Lymphoblastic Leukemia (ALL). Blood, 2015, 126, 3721-3721.	0.6	13
419	Safety, Pharmacokinetics, and Efficacy of BP-100-1.01 (Liposomal Grb-2 Antisense Oligonucleotide) in Patients with Refractory or Relapsed Acute Myeloid Leukemia (AML), Philadelphia Chromosome Positive Chronic Myelogenous Leukemia (CML), Acute Lymphoblastic Leukemia (ALL), and Myelodysplastic Syndrome (MDS), Blood, 2015, 126, 3801-3801.	0.6	6
420	Phase I/II Study of Vosaroxin and Decitabine in Newly Diagnosed Older Patients (pts) with Acute Myeloid Leukemia (AML) and High Risk Myelodysplastic Syndrome (MDS). Blood, 2015, 126, 461-461.	0.6	9
421	Frontline Inotuzumab Ozogamicin in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) for Older Patients with Acute Lymphoblastic Leukemia (ALL). Blood, 2015, 126, 83-83.	0.6	19
422	Prognostic significance of early dynamics of peripheral blood counts in patients with AML/MDS undergoing induction chemotherapy Journal of Clinical Oncology, 2015, 33, e18045-e18045.	0.8	0
423	Persistence of Cytogenetic Abnormalities at Complete Remission Is Not Prognostic for Relapse-Free or Overall Survival in Adult Patients with Acute Lymphoblastic Leukemia. Blood, 2015, 126, 1416-1416.	0.6	0
424	Phase II trial of HyperCVAD and Dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. American Journal of Hematology, 2014, 89, 282-287.	2.0	58
425	Impact of comorbidities by ACEâ€27 in the revisedâ€ŀPSS for patients with myelodysplastic syndromes. American Journal of Hematology, 2014, 89, 509-516.	2.0	30
426	HCVAD plus imatinib or dasatinib in lymphoid blastic phase chronic myeloid leukemia. Cancer, 2014, 120, 373-380.	2.0	54
427	Gemtuzumab ozogamicin with fludarabine, cytarabine, and granulocyte colony stimulating factor (FLAG O) as frontâ€line regimen in patients with core binding factor acute myelogenous leukemia. American Journal of Hematology, 2014, 89, 964-968.	2.0	62
428	New Oral Anticoagulants and the Cancer Patient. Oncologist, 2014, 19, 82-93.	1.9	180
429	Clofarabine, idarubicin, and cytarabine (CIA) as frontline therapy for patients â‰ø0 years with newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2013, 88, 961-966.	2.0	46
430	Acquisition of cytogenetic abnormalities in patients with IPSS defined lowerâ€risk myelodysplastic syndrome is associated with poor prognosis and transformation to acute myelogenous leukemia. American Journal of Hematology, 2013, 88, 831-837.	2.0	43
431	Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer, 2013, 119, 2728-2736.	2.0	265
432	The Achievement of a 3-Month Complete Cytogenetic Response to Second-Generation Tyrosine Kinase Inhibitors Predicts Survival in Patients With Chronic Phase Chronic Myeloid Leukemia After Imatinib Failure. Clinical Lymphoma, Myeloma and Leukemia, 2013, 13, 302-306.	0.2	20

#	Article	IF	CITATIONS
433	The role of clofarabine in acute myeloid leukemia. Leukemia and Lymphoma, 2013, 54, 688-698.	0.6	43
434	Randomized Open-Label Phase II Study of Decitabine in Patients With Low- or Intermediate-Risk Myelodysplastic Syndromes. Journal of Clinical Oncology, 2013, 31, 2548-2553.	0.8	96
435	Early responses predict better outcomes in patients with newly diagnosed chronic myeloid leukemia: results with four tyrosine kinase inhibitor modalities. Blood, 2013, 121, 4867-4874.	0.6	124
436	Phase II Trial of Vorinostat With Idarubicin and Cytarabine for Patients With Newly Diagnosed Acute Myelogenous Leukemia or Myelodysplastic Syndrome. Journal of Clinical Oncology, 2012, 30, 2204-2210.	0.8	158
437	Improved survival in chronic myeloid leukemia since the introduction of imatinib therapy: a single-institution historical experience. Blood, 2012, 119, 1981-1987.	0.6	298
438	Inotuzumab ozogamicin, an anti-CD22–calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncology, The, 2012, 13, 403-411.	5.1	401
439	Twice-Daily Fludarabine and Cytarabine Combination With or Without Gentuzumab Ozogamicin is Effective in Patients With Relapsed/Refractory Acute Myeloid Leukemia, High-Risk Myelodysplastic Syndrome, and Blast- Phase Chronic Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2012, 12, 244-251.	0.2	34
440	Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers. Blood, 2011, 118, 4690-4693.	0.6	88
441	The achievement of an early complete cytogenetic response is a major determinant for outcome in patients with early chronic phase chronic myeloid leukemia treated with tyrosine kinase inhibitors. Blood, 2011, 118, 4541-4546.	0.6	133
442	Intra-Abdominal Splenosis Mimicking Metastatic Cancer. American Journal of the Medical Sciences, 2011, 341, 246-249.	0.4	29
443	A phase 1â€2 study of a farnesyltransferase inhibitor, tipifarnib, combined with idarubicin and cytarabine for patients with newly diagnosed acute myeloid leukemia and highâ€risk myelodysplastic syndrome. Cancer, 2011, 117, 1236-1244.	2.0	36
444	Phase I Study of Oral Azacitidine in Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, and Acute Myeloid Leukemia. Journal of Clinical Oncology, 2011, 29, 2521-2527.	0.8	232
445	Intensive chemotherapy does not benefit most older patients (age 70 years or older) with acute myeloid leukemia. Blood, 2010, 116, 4422-4429.	0.6	336
446	Central nervous system prophylaxis in adults with acute lymphoblastic leukemia. Cancer, 2010, 116, 2290-2300.	2.0	77
447	Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer, 2010, 116, 3830-3834.	2.0	241
448	Defining the course and prognosis of adults with acute lymphocytic leukemia in first salvage after induction failure or short first remission duration. Cancer, 2010, 116, 5568-5574.	2.0	104
449	Nilotinib As Front-Line Treatment for Patients With Chronic Myeloid Leukemia in Early Chronic Phase. Journal of Clinical Oncology, 2010, 28, 392-397.	0.8	231
450	Results of Dasatinib Therapy in Patients With Early Chronic-Phase Chronic Myeloid Leukemia. Journal of Clinical Oncology, 2010, 28, 398-404.	0.8	227

#	Article	IF	CITATIONS
451	Muehrcke's Lines. American Journal of Medicine, 2010, 123, 991-992.	0.6	22
452	Religion and Spirituality: A Barrier and a Bridge in the Everyday Professional Work of Pediatric Physicians. Social Problems, 2009, 56, 702-721.	2.0	37
453	Myelodysplastic Syndrome with Fibrosis: Experience of a Single-Institution with 139 Patients Blood, 2009, 114, 2775-2775.	0.6	2
454	Imatinib: high dose versus standard dose. Clinical Advances in Hematology and Oncology, 2009, 7, 812-4.	0.3	0
455	Characterization of water of hydration fractions in rabbit skeletal muscle with age and time of post-mortem by centrifugal dehydration force and rehydration methods. Cell Biology International, 2008, 32, 1337-1343.	1.4	4
456	Kinase domain point mutations in Philadelphia chromosomeâ€positive acute lymphoblastic leukemia emerge after therapy with BCRâ€ABL kinase inhibitors. Cancer, 2008, 113, 985-994.	2.0	120
457	Neurologic complications associated with intrathecal liposomal cytarabine given prophylactically in combination with high-dose methotrexate and cytarabine to patients with acute lymphocytic leukemia. Blood, 2007, 109, 3214-3218.	0.6	174
458	Chromosomal abnormalities in Philadelphia chromosome–negative metaphases appearing during imatinib mesylate therapy in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Blood, 2007, 110, 2991-2995.	0.6	138
459	A simple centrifugal dehydration force method to characterize water compartments in fresh and post-mortem fish muscle. Cell Biology International, 2007, 31, 516-520.	1.4	3
460	Verification of simple hydration/dehydration methods to characterize multiple water compartments on Tendon Type 1 Collagen. Cell Biology International, 2007, 31, 531-539.	1.4	28
461	Safe alternative cancer therapy using electromagnetic fields. The Environmentalist, 2007, 27, 453-456.	0.7	8
462	Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome:. Cancer, 2006, 106, 1090-1098.	2.0	550
463	Dietary omega-3 fatty acids and ionizing irradiation on human breast cancer xenograft growth and angiogenesis. Cancer Cell International, 2005, 5, 12.	1.8	28
464	Endothelial cell pseudopods and angiogenesis of breast cancer tumors. Cancer Cell International, 2005, 5, 17.	1.8	9
465	Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasis. Cancer Cell International, 2005, 5, 23.	1.8	40