
Neil C Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3823447/publications.pdf Version: 2024-02-01

NEIL C THONED

#	Article	lF	CITATIONS
1	Dryland field validation of genotypic variation in salt tolerance of chickpea (Cicer arietinum L.) determined under controlled conditions. Field Crops Research, 2022, 276, 108392.	2.3	5
2	Plasticâ€film mulch affects partitioning of maize biomass and nutrients to grain. Crop Science, 2022, 62, 315-325.	0.8	2
3	Transcriptome Analyses of Near Isogenic Lines Reveal Putative Drought Tolerance Controlling Genes in Wheat. Frontiers in Plant Science, 2022, 13, 857829.	1.7	11
4	Combined high leaf hydraulic safety and efficiency provides drought tolerance in <i>Caragana</i> species adapted to low mean annual precipitation. New Phytologist, 2021, 229, 230-244.	3.5	63
5	Chickpea. , 2021, , 342-358.		3
6	Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages. Plant Physiology, 2021, 186, 782-797.	2.3	30
7	Reduced Vegetative Growth Increases Grain Yield in Spring Wheat Genotypes in the Dryland Farming Region of North-West China. Agronomy, 2021, 11, 663.	1.3	12
8	Phosphorus Supply Increases Internode Length and Leaf Characteristics, and Increases Dry Matter Accumulation and Seed Yield in Soybean under Water Deficit. Agronomy, 2021, 11, 930.	1.3	6
9	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	2.4	73
10	Yield components, reproductive allometry and the tradeoff between grain yield and yield stability in dryland spring wheat. Field Crops Research, 2020, 257, 107930.	2.3	22
11	Determining optimal mulching, planting density, and nitrogen application to increase maize grain yield and nitrogen translocation efficiency in Northwest China. BMC Plant Biology, 2020, 20, 282.	1.6	15
12	Morphological Features and Biomass Partitioning of Lucerne Plants (Medicago sativa L.) Subjected to Water Stress. Agronomy, 2020, 10, 322.	1.3	15
13	Irrigation during Flowering Improves Subsoil Water Uptake and Grain Yield in Rainfed Soybean. Agronomy, 2020, 10, 120.	1.3	15
14	Crossâ€ŧolerance for drought, heat and salinity stresses in chickpea (<i>Cicer arietinum</i> L.). Journal of Agronomy and Crop Science, 2020, 206, 405-419.	1.7	23
15	Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybean subjected to water shortage. Environmental and Experimental Botany, 2019, 166, 103816.	2.0	32
16	Water-conserving and biomass-allocation traits are associated with higher yields in modern cultivars compared to landraces of soybean [Glycine max (L.) Merr.] in rainfed water-limited environments. Environmental and Experimental Botany, 2019, 168, 103883.	2.0	10
17	Roots of Lucerne Seedlings are More Resilient to a Water Deficit than Leaves or Stems. Agronomy, 2019, 9, 123.	1.3	12
18	Crop root system traits cannot be seen as a silver bullet delivering drought resistance. Plant and Soil, 2019, 439, 31-43.	1.8	40

Neil C Turner

#	Article	lF	CITATIONS
19	Imposing and maintaining soil water deficits in drought studies in pots. Plant and Soil, 2019, 439, 45-55.	1.8	66
20	Nondestructive Phenomic Tools for the Prediction of Heat and Drought Tolerance at Anthesis in <i>Brassica</i> Species. Plant Phenomics, 2019, 2019, 3264872.	2.5	27
21	The effects of plastic-film mulch on the grain yield and root biomass of maize vary with cultivar in a cold semiarid environment. Field Crops Research, 2018, 216, 89-99.	2.3	70
22	Turgor maintenance by osmotic adjustment: 40 years of progress. Journal of Experimental Botany, 2018, 69, 3223-3233.	2.4	132
23	Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. European Journal of Agronomy, 2018, 99, 138-147.	1.9	113
24	Response of chickpea (<i>Cicer arietinum</i> L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set. Journal of Experimental Botany, 2017, 68, erw153.	2.4	67
25	Recently-released genotypes of naked oat (Avena nuda L.) out-yield early releases under water-limited conditions by greater reproductive allocation and desiccation tolerance. Field Crops Research, 2017, 204, 169-179.	2.3	20
26	Drought-Tolerant Brassica rapa Shows Rapid Expression of Gene Networks for General Stress Responses and Programmed Cell Death Under Simulated Drought Stress. Plant Molecular Biology Reporter, 2017, 35, 416-430.	1.0	30
27	Effects of drought stress on morphological, physiological and biochemical characteristics of wheat species differing in ploidy level. Functional Plant Biology, 2017, 44, 219.	1.1	52
28	Seed germination of Caragana species from different regions is strongly driven by environmental cues and not phylogenetic signals. Scientific Reports, 2017, 7, 11248.	1.6	28
29	Effects of Drought Stress on Morphophysiological Traits, Biochemical Characteristics, Yield, and Yield Components in Different Ploidy Wheat. Advances in Agronomy, 2017, , 139-173.	2.4	42
30	Turgor maintenance by osmotic adjustment, an adaptive mechanism for coping with plant water deficits. Plant, Cell and Environment, 2017, 40, 1-3.	2.8	50
31	Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agricultural Water Management, 2017, 179, 236-245.	2.4	74
32	Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop and Pasture Science, 2017, 68, 823.	0.7	61
33	Pattern of Water Use and Seed Yield under Terminal Drought in Chickpea Genotypes. Frontiers in Plant Science, 2017, 8, 1375.	1.7	34
34	Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply. Frontiers in Plant Science, 2017, 8, 1499.	1.7	62
35	IRRIGATION OF CHICKPEA (<i>CICER ARIETINUM</i> L.) INCREASES YIELD BUT NOT WATER PRODUCTIVITY. Experimental Agriculture, 2016, 52, 1-13.	0.4	21
36	Heat Stress at Reproductive Stage Disrupts Leaf Carbohydrate Metabolism, Impairs Reproductive Function, and Severely Reduces Seed Yield in Lentil. Journal of Crop Improvement, 2016, 30, 118-151.	0.9	79

2.4

120

#	Article	IF	CITATIONS
37	Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration, of young and old stands of alfalfa in response to nitrogen and phosphorus fertilisation in a semiarid environment. Field Crops Research, 2016, 198, 247-257.	2.3	52
38	Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agricultural and Forest Meteorology, 2016, 228-229, 42-51.	1.9	126
39	Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats. Plant Physiology, 2016, 172, 2286-2299.	2.3	59
40	Effect of climate warming on maize production in Timor-Leste: interaction with nitrogen supply. Crop and Pasture Science, 2016, 67, 156.	0.7	4
41	Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agricultural and Forest Meteorology, 2016, 220, 160-169.	1.9	117
42	24-epibrassinolide increases growth, grain yield and β-ODAP production in seeds of well-watered and moderately water-stressed grass pea. Plant Growth Regulation, 2016, 78, 217-231.	1.8	14
43	Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Functional Plant Biology, 2015, 42, 162.	1.1	54
44	Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cice	r) ŢįĘTQq(0 0 0 rgBT /O
45	Salt sensitivity in chickpea (<scp><i>C</i></scp> <i>icer arietinum</i> â€ <scp>L</scp> .): ions in reproductive tissues and yield components in contrasting genotypes. Plant, Cell and Environment, 2015, 38, 1565-1577.	2.8	69
46	Cutting improves the productivity of lucerne-rich stands used in the revegetation of degraded arable land in a semi-arid environment. Scientific Reports, 2015, 5, 12130.	1.6	18
47	Genotypic Variation in the Concentration of Î ² - <i>N</i> -Oxalyl- <scp>I</scp> -α,Î ² -diaminopropionic Acid (Î ² -ODAP) in Grass Pea (<i>Lathyrus sativus</i> L) Seeds Is Associated with an Accumulation of Leaf and Pod Î ² -ODAP during Vegetative and Reproductive Stages at Three Levels of Water Stress. Journal of Agricultural and Food Chemistry, 2015, 63, 6133-6141.	2.4	16
48	Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil. Plant and Soil, 2015, 392, 215-226.	1.8	46
49	Two decades of InterDrought conferences: are we bridging the genotype-to-phenotype gap?. Journal of Experimental Botany, 2014, 65, 6137-6139.	2.4	13
50	The distribution of four Caragana species is related to their differential responses to drought stress. Plant Ecology, 2014, 215, 133-142.	0.7	12
51	Strategies to increase the yield and yield stability of crops under drought – are we making progress?. Functional Plant Biology, 2014, 41, 1199.	1.1	32
52	Does a mixture of old and modern winter wheat cultivars increase yield and water use efficiency in water-limited environments?. Field Crops Research, 2014, 156, 12-21.	2.3	41

53	Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology, 2014, 41, 1148.	1.1	214

54 Water-Saving Innovations in Chinese Agriculture. Advances in Agronomy, 2014, , 149-201.

#	Article	IF	CITATIONS
55	Film-Mulched Ridge-Furrow Management Increases Maize Productivity and Sustains Soil Organic Carbon in a Dryland Cropping System. Soil Science Society of America Journal, 2014, 78, 1434-1441.	1.2	88
56	Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L) subjected to salt stress. Plant and Soil, 2013, 365, 347-361.	1.8	88
57	Water Use Efficiency. , 2013, , 225-268.		24
58	Exogenous abscisic acid reduces water loss and improves antioxidant defence, desiccation tolerance and transpiration efficiency in two spring wheat cultivars subjected to a soil water deficit. Functional Plant Biology, 2013, 40, 494.	1.1	84
59	Ridge-Furrow Mulching Systems—An Innovative Technique for Boosting Crop Productivity in Semiarid Rain-Fed Environments. Advances in Agronomy, 2013, , 429-476.	2.4	453
60	Simulation analysis of factors affecting sorghum yield at selected sites in eastern and southern Africa, with emphasis on increasing temperatures. Agricultural Systems, 2013, 121, 53-62.	3.2	31
61	Limits to the height growth of Caragana korshinskii resprouts. Tree Physiology, 2013, 33, 275-284.	1.4	17
62	Delayed water loss and temperature rise in floral buds compared with leaves of Brassica rapa subjected to a transient water stress during reproductive development. Functional Plant Biology, 2013, 40, 690.	1.1	18
63	County-Scale Changes in Soil Organic Carbon of Croplands in Southeastern Gansu Province of China from the 1980s to the Mid-2000s. Soil Science Society of America Journal, 2013, 77, 2111-2121.	1.2	10
64	Germination Characteristics and Seedling Emergence of Switchgrass with Different Agricultural Practices under Arid Conditions in China. Crop Science, 2012, 52, 2341-2350.	0.8	13
65	Climate Change and Population Growth in Timor Leste: Implications for Food Security. Ambio, 2012, 41, 823-840.	2.8	49
66	Â-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. Journal of Experimental Botany, 2012, 63, 4849-4860.	2.4	67
67	Dehydration of isolated roots of seven Lupinus species induces synthesis of different amounts of free, but not conjugated, abscisic acid. Plant Growth Regulation, 2012, 66, 265-269.	1.8	11
68	Assessment of ICCV 2Â×ÂJG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Molecular Breeding, 2012, 30, 9-21.	1.0	90
69	Increasing the harvest index of wheat in the high rainfall zones of southern Australia. Field Crops Research, 2012, 129, 111-123.	2.3	36
70	Large number of flowers and tertiary branches, and higher reproductive success increase yields under salt stress in chickpea. European Journal of Agronomy, 2012, 41, 42-51.	1.9	48
71	Innovations in agronomy for food legumes. A review. Agronomy for Sustainable Development, 2012, 32, 45-64.	2.2	158
72	Climate change in south-west Australia and north-west China: challenges and opportunities for crop production. Crop and Pasture Science, 2011, 62, 445.	0.7	85

Neil C Turner

#	Article	IF	CITATIONS
73	Climate change and agricultural ecosystem management in dry areas. Crop and Pasture Science, 2011, 62, i.	0.7	3
74	The impact of temperature variability on wheat yields. Clobal Change Biology, 2011, 17, 997-1012.	4.2	760
75	Drying the surface soil reduces the nitrogen content of faba bean (Vicia faba L.) through a reduction in nitrogen fixation. Plant and Soil, 2011, 339, 351-362.	1.8	14
76	Agricultural ecosystem management in dry areas: challenges and solutions. Plant and Soil, 2011, 347, 1-6.	1.8	27
77	Physiology of Spikelet Development on the Rice Panicle. Advances in Agronomy, 2011, 110, 333-359.	2.4	69
78	Root growth of lupins is more sensitive to waterlogging than wheat. Functional Plant Biology, 2011, 38, 910.	1.1	18
79	Does root pruning increase yield and water-use efficiency of winter wheat?. Crop and Pasture Science, 2010, 61, 899.	0.7	31
80	The contrasting influence of short-term hypoxia on the hydraulic properties of cells and roots of wheat and lupin. Functional Plant Biology, 2010, 37, 183.	1.1	49
81	Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning. European Journal of Agronomy, 2010, 33, 257-266.	1.9	72
82	Salt sensitivity in chickpea. Plant, Cell and Environment, 2010, 33, 490-509.	2.8	194
83	Growth in two common gardens reveals species by environment interaction in carbon isotope discrimination of Eucalyptus. Tree Physiology, 2010, 30, 741-747.	1.4	10
84	Growing-season rainfall, ear number and the water-limited potential yield of wheat in south-western Australia. Crop and Pasture Science, 2010, 61, 296.	0.7	19
85	Source - sink balance and manipulating sink - source relations of wheat indicate that the yield potential of wheat is sink-limited in high-rainfall zones. Crop and Pasture Science, 2010, 61, 852.	0.7	62
86	Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. Journal of Experimental Botany, 2010, 61, 335-345.	2.4	193
87	Waterlogging affects the growth, development of tillers, and yield of wheat through a severe, but transient, N deficiency. Crop and Pasture Science, 2009, 60, 578.	0.7	73
88	Roles of Morphology, Anatomy, and Aquaporins in Determining Contrasting Hydraulic Behavior of Roots Â. Plant Physiology, 2009, 150, 348-364.	2.3	194
89	Seed Size Is Associated with Sucrose Synthase Activity in Developing Cotyledons of Chickpea. Crop Science, 2009, 49, 621-627.	0.8	9
90	Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species. Physiologia Plantarum, 2008, 132, 440-445.	2.6	38

#	Article	IF	CITATIONS
91	Bean α-Amylase Inhibitors in Transgenic Peas Inhibit Development of Pea Weevil Larvae. Journal of Economic Entomology, 2007, 100, 1416-1422.	0.8	17
92	High ear number is key to achieving high wheat yields in the high-rainfall zone of south-western Australia. Australian Journal of Agricultural Research, 2007, 58, 21.	1.5	26
93	Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways. Plant, Cell and Environment, 2007, 30, 861-874.	2.8	50
94	Carbon Isotope Discrimination is not Correlated with Transpiration Efficiency in Three Cool‧eason Grain Legumes (Pulses). Journal of Integrative Plant Biology, 2007, 49, 1478-1483.	4.1	30
95	Physiological and seed yield responses to water deficits among lentil genotypes from diverse origins. Australian Journal of Agricultural Research, 2006, 57, 903.	1.5	34
96	Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. Journal of Experimental Botany, 2006, 58, 187-194.	2.4	98
97	Improving agricultural water use efficiency in arid and semiarid areas of China. Agricultural Water Management, 2006, 80, 23-40.	2.4	713
98	Species differences in carbon isotope ratios, specific leaf area and nitrogen concentrations in leaves of Eucalyptus growing in a common garden compared with along an aridity gradient. Physiologia Plantarum, 2006, 127, 434-444.	2.6	35
99	Variation in pod production and abortion among chickpea cultivars under terminal drought. European Journal of Agronomy, 2006, 24, 236-246.	1.9	144
100	Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Tree Physiology, 2006, 26, 479-492.	1.4	116
101	Evaluation of <i>Helicoverpa</i> and drought resistance in desi and kabuli chickpea. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4, 198-203.	0.4	35
102	Productivity, sustainability, and rainfall-use efficiency in Australian rainfed Mediterranean agricultural systems. Australian Journal of Agricultural Research, 2005, 56, 1123.	1.5	108
103	Water use of wheat, barley, canola, and lucerne in the high rainfall zone of south-western Australia. Australian Journal of Agricultural Research, 2005, 56, 743.	1.5	14
104	Foliar nitrogen applications increase the seed yield and protein content in chickpea (Cicer arietinum) Tj ETQq0 0	Ο rgBT /Ον £5	erlock 10 Tf
105	Seed Filling in Grain Legumes Under Water Deficits, with Emphasis on Chickpeas. Advances in Agronomy, 2005, , 211-250.	2.4	38
106	Evolution in the genus Cicer - vernalisation response and low temperature pod set in chickpea (C.) Tj ETQq0 0 0 r	gBT/Over 1.5	ock 10 Tf 50
107	Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): the role of pod wall, seed coat, and embryo. Journal of Experimental Botany, 2004, 55, 1687-1696.	2.4	67

Breeding for improved productivity, multiple resistance and wide adaptation in chickpea (Cicer) Tj ETQq0 0 0 rgBT $_{0.4}^{O}$ rgPorder 10 Tf 50 62

#	Article	IF	CITATIONS
109	Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific Â-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. Journal of Experimental Botany, 2004, 55, 497-505.	2.4	35
110	Sustainable production of crops and pastures under drought in a Mediterranean environment. Annals of Applied Biology, 2004, 144, 139-147.	1.3	101
111	Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. Journal of Experimental Botany, 2004, 55, 2413-2425.	2.4	241
112	Yield of wheat and canola in the high rainfall zone of south-western Australia in years with and without a transient perched water table. Australian Journal of Agricultural Research, 2004, 55, 461.	1.5	41
113	Maturation temperature and rainfall influence seed dormancy characteristics of annual ryegrass (Lolium rigidum). Australian Journal of Agricultural Research, 2004, 55, 1047.	1.5	91
114	Osmotic Adjustment and Osmoregulation. , 2004, , 850-853.		4
115	Viewpoint: Evolution of cultivated chickpea: four bottlenecks limit diversity andconstrain adaptation. Functional Plant Biology, 2003, 30, 1081.	1.1	245
116	Ecogeography of Annual Wild Cicer Species. Crop Science, 2003, 43, 1076-1090.	0.8	113
117	Evaluating the Impact of a Trait for Increased Specific Leaf Area on Wheat Yields Using a Crop Simulation Model. Agronomy Journal, 2003, 95, 10.	0.9	61
118	Limitations to carrot (Daucus carota L.) productivity when grown with reduced rates of frequent irrigation on a free-draining, sandy soil. Australian Journal of Agricultural Research, 2003, 54, 499.	1.5	6
119	Influence of Saline Irrigation on Growth, Ion Accumulation and Partitioning, and Leaf Gas Exchange of Carrot (Daucus carota L.). Annals of Botany, 2002, 90, 715-724.	1.4	54
120	Sustainable cropping systems for high rainfall areas of southwestern Australia. Agricultural Water Management, 2002, 53, 201-211.	2.4	25
121	The role of agroforestry and perennial pasture in mitigating water logging and secondary salinity: summary. Agricultural Water Management, 2002, 53, 271-275.	2.4	31
122	A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. European Journal of Agronomy, 2002, 17, 123-141.	1.9	59
123	Title is missing!. Plant and Soil, 2002, 240, 191-199.	1.8	70
124	Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy, 2001, 71, 193-231.	2.4	308
125	Gas exchange by pods and subtending leaves and internal recycling of CO2 by pods of chickpea (Cicer) Tj ETQq1	1 0.78431 2.4	4 rgBT /Ove
126	Gas exchange by pods and subtending leaves and internal recycling of CO 2 by pods of chickpea (Cicer) Tj ETQqC) 0 0 rgBT 2.4	Qverlock 10

#	Article	IF	CITATIONS
127	Tree roots: conduits for deep recharge of soil water. Oecologia, 2001, 126, 158-165.	0.9	186
128	Reactions of chickpea to water stress: yield and seed composition. Journal of the Science of Food and Agriculture, 2001, 81, 1288-1291.	1.7	75
129	High vapour pressure deficit results in a rapid decline of leaf water potential and photosynthesis of carrots grown on free-draining, sandy soils. Australian Journal of Agricultural Research, 2000, 51, 839.	1.5	7
130	Leaf utter Psychrometers: A Cautionary Note. Agronomy Journal, 2000, 92, 538-541.	0.9	5
131	Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiology, 2000, 20, 1157-1165.	1.4	156
132	Seed coat cell turgor in chickpea is independent of changes in plant and pod water potential. Journal of Experimental Botany, 2000, 51, 895-900.	2.4	25
133	Characterisation of hydrogen isotope profiles in an agroforestry system: implications for tracing water sources of trees. Agricultural Water Management, 2000, 45, 229-241.	2.4	39
134	The redistribution of soil water by tree root systems. Oecologia, 1998, 115, 306-311.	0.9	480
135	Further Progress in Crop Water Relations. Advances in Agronomy, 1996, 58, 293-338.	2.4	301
136	Abscisic acid in soils: What is its function and which factors and mechanisms influence its concentration?. Plant and Soil, 1996, 184, 105-110.	1.8	70
137	Plant Spacing, Density, and Yield of Wheat Subjected to Postanthesis Water Deficits. Crop Science, 1994, 34, 741-748.	0.8	25
138	Remobilization of Carbon and Nitrogen in Wheat as Influenced by Postanthesis Water Deficits. Crop Science, 1994, 34, 118-124.	0.8	232
139	Rate of Development of Postanthesis Water Deficits and Grain Filling of Spring Wheat. Crop Science, 1992, 32, 1238-1242.	0.8	185
140	Measurement and influence of environmental and plant factors on stomatal conductance in the field. Agricultural and Forest Meteorology, 1991, 54, 137-154.	1.9	90
141	Influence of leaf age and light environment on the gas exchange of lupins and wheat. Physiologia Plantarum, 1990, 79, 15-22.	2.6	22
142	Influence of Xylem Water Potential on Leaf Elongation and Osmotic Adjustment of Wheat and Lupin. Journal of Experimental Botany, 1990, 41, 217-221.	2.4	28
143	Measurement of plant water status by the pressure chamber technique. Irrigation Science, 1988, 9, 289-308.	1.3	658
144	Water Relations and Osmotic Adjustment of Leaves and Roots of Lupins in Response to Water Deficits 1. Crop Science, 1987, 27, 977-983.	0.8	52

#	Article	IF	CITATIONS
145	Changes at panicle emergence in the water relations of a wetland and a dryland Japonica rice cultivar under wetland conditions. Physiologia Plantarum, 1987, 69, 586-590.	2.6	0
146	Responses of seven diverse rice cultivars to water deficits II. Osmotic adjustment, leaf elasticity, leaf extension, leaf death, stomatal conductance and photosynthesis. Field Crops Research, 1986, 13, 273-286.	2.3	85
147	Responses of seven diverse rice cultivars to water deficits I. Stress development, canopy temperature, leaf rolling and growth. Field Crops Research, 1986, 13, 257-271.	2.3	109
148	Crop Water Deficits: A Decade of Progress. Advances in Agronomy, 1986, 39, 1-51.	2.4	322
149	Photosynthesis, dry matter accumulation and distribution in the wild sunflower Helianthus petiolaris and the cultivated sunflower Helianthus annuus as influenced by water deficits. Oecologia, 1986, 69, 181-187.	0.9	49
150	The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. Oecologia, 1985, 65, 348-355.	0.9	227
151	Influence of Osmotic Adjustment on Leaf Rolling and Tissue Death in Rice (<i>Oryza sativa</i> L.). Plant Physiology, 1984, 75, 338-341.	2.3	153
152	Comparison of Water Potentials Measured by In Situ Psychrometry and Pressure Chamber in Morphologically Different Species. Plant Physiology, 1984, 74, 316-319.	2.3	69
153	Branch growth and leaf numbers of red maple (Acer rubrum L.) and red oak (Quercus rubra L.): response to defoliation. Oecologia, 1984, 62, 1-6.	0.9	40
154	The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. Oecologia, 1984, 63, 338-342.	0.9	183
155	The Negev: The Challenge of a Desert.Michael Evenari , Leslie Shanan , Naphtali Tadmor. Quarterly Review of Biology, 1984, 59, 90-91.	0.0	0
156	A comparison of the water relations characteristics of Helianthus annuus and Helianthus petiolaris when subjected to water deficits. Oecologia, 1983, 58, 309-313.	0.9	46
157	Evaluation of a Non-Destructive Method for Measuring Turgor Pressure inHelianthus. Journal of Experimental Botany, 1983, 34, 1562-1568.	2.4	5
158	Yield, Water Relations, Gas Exchange, and Surface Reflectances of Nearâ€Isogenic Wheat Lines Differing in Glaucousness ¹ . Crop Science, 1983, 23, 318-325.	0.8	180
159	Leaf expansion of four sunflower (Helianthus annuus L.) cultivars in relation to water deficits. II. Diurnal patterns during stress and recovery Plant, Cell and Environment, 1982, 5, 279-286.	2.8	40
160	Plant-water relations and adaptation to stress. Plant and Soil, 1981, 58, 97-131.	1.8	177
161	Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 1981, 58, 339-366.	1.8	1,041
162	Leaf expansion of four sunflower (Helianthus annuus L) cultivars in relation to water deficits. I. Patterns during plant development. Plant, Cell and Environment, 1981, 4, 399-407.	2.8	68

#	Article	IF	CITATIONS
163	Correction of Flow Resistances of Plants Measured From Covered and Exposed Leaves. Plant Physiology, 1981, 68, 1090-1092.	2.3	47
164	Differences in root and shoot development of tomato (Lycopersicon esculentum L.) varieties across contrasting soil environments. Plant and Soil, 1978, 49, 127-136.	1.8	17
165	Osmotic Adjustment in Leaves of Sorghum in Response to Water Deficits. Plant Physiology, 1978, 61, 122-126.	2.3	357
166	Crop Water Deficits. Advances in Agronomy, 1976, 28, 161-217.	2.4	457
167	Stomatal response of two almond cultivars to fusicoccin. Physiological Plant Pathology, 1976, 9, 175-182.	1.4	20
168	Use of the Pressure Chamber in Membrane Damage Studies. Journal of Experimental Botany, 1976, 27, 1085-1092.	2.4	14
169	Changes in Alfalfa Stem Conductance Induced by Corynebacterium insidiosum Toxin. Plant Physiology, 1975, 55, 559-561.	2.3	36
170	Influence of a <i>Ceratocystis ulmi</i> Toxin on Water Relations of Elm (<i>Ulmus americana</i>). Plant Physiology, 1975, 55, 312-316.	2.3	66
171	Water Uptake, Diameter Change, and Nonlinear Diffusion in Tree Stems. Plant Physiology, 1975, 55, 247-250.	2.3	195
172	Concurrent Comparisons of Stomatal Behavior, Water Status, and Evaporation of Maize in Soil at High or Low Water Potential. Plant Physiology, 1975, 55, 932-936.	2.3	52
173	Twoâ€Dimensional Similarity Solution: Theory and Application to the Determination of Soilâ€Water Diffusivity. Soil Science Society of America Journal, 1975, 39, 387-390.	1.2	9
174	Stomatal Behavior and Water Status of Maize, Sorghum, and Tobacco under Field Conditions. Plant Physiology, 1974, 53, 360-365.	2.3	157
175	Stomatal Behavior and Water Status of Maize, Sorghum, and Tobacco under Field Conditions. Plant Physiology, 1973, 51, 31-36.	2.3	140
176	ACTION OF FUSICOCCIN ON THE POTASSIUM BALANCE OF GUARD CELLS OF PHASEOLUS VULGARIS. , 1973, 60, 717.		11
177	Importance of Moisture on Stomatal Behavior Of Plants Subjected to Ozone. Journal of the Air Pollution Control Association, 1972, 22, 718-721.	0.5	45
178	Comparison of simulated and actual evaporation from maize and soil in a lysimeter. Agricultural Meteorology, 1972, 10, 113-123.	0.7	11
179	K+ Uptake of Guard Cells stimulated by Fusicoccin. Nature, 1972, 235, 341-342.	13.7	43
180	Stomatal Conductance, Fleck Injury, and Growth of Tobacco Cultivars Varying in Ozone Tolerance. Phytopathology, 1972, 62, 63.	1.1	20

#	Article	IF	CITATIONS
181	STOMATAL BEHAVIOR OF AVENA SATIVA TREATED WITH TWO PHYTOTOXINS, VICTORIN AND FUSICOCCIN. , 1972, 59, 133.		11
182	STOMATAL RESPONSE TO CHANGING LIGHT BY FOUR TREE SPECIES OF VARYING SHADE TOLERANCE. New Phytologist, 1971, 70, 77-84.	3.5	122
183	Analysis of Operation and Calibration of a Ventilated Diffusion Porometer. Plant Physiology, 1970, 46, 175-177.	2.3	75
184	RESPONSE OF ADAXIAL AND ABAXIAL STOMATA TO LIGHT. New Phytologist, 1970, 69, 647-653.	3.5	58
185	Speeding the Drying of Alfalfa Hay with Fusicoccin 1. Agronomy Journal, 1970, 62, 538-541.	0.9	16
186	Water Potential Gradients in Field Tobacco. Plant Physiology, 1970, 46, 343-346.	2.3	308
187	Stomatal Resistance to Transpiration in Three Contrasting Canopies 1. Crop Science, 1969, 9, 303-307.	0.8	45
188	Fusicoccin: a Fungal Toxin that opens Stomata. Nature, 1969, 223, 1070-1071.	13.7	122
189	Effects of Changing Stomatal Width in A Red Pine Forest on Soil Water Content, Leaf Water Potential, Bole Diameter, and Growth. Plant Physiology, 1968, 43, 973-978.	2.3	52