Ch Haberland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3823294/publications.pdf

Version: 2024-02-01

F.0	2.107	172457	155660
59	3,187	29	55
papers	citations	h-index	g-index
63	63	63	2742
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Constraints on Crustal Structure in the Vicinity of the Adriatic Indenter (European Alps) From <i>Vp</i> and <i>Vp</i> /i>/ci>Vs Local Earthquake Tomography. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	6
2	Relocation of earthquakes in the southern and eastern Alps (Austria, Italy) recorded by the dense, temporary SWATH-D network using a Markov chain Monte Carlo inversion. Solid Earth, 2021, 12, 1087-1109.	2.8	9
3	A Fast GUI-Based Tool for Group-Velocity Analysis of Surface Waves. Seismological Research Letters, 2021, 92, 2640-2646.	1.9	1
4	Local Earthquake Tomography at Los Humeros Geothermal Field (Mexico). Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020390.	3.4	9
5	Bayesian simultaneous inversion for local earthquake hypocentres and 1-D velocity structure using minimum prior knowledge. Geophysical Journal International, 2019, 218, 840-854.	2.4	10
6	Bayesian inversion of refraction seismic traveltime data. Geophysical Journal International, 2018, 212, 1645-1656.	2.4	17
7	Attenuation tomography in West Bohemia/Vogtland. Tectonophysics, 2017, 695, 64-75.	2.2	12
8	Zooming into the Hindu Kush slab break-off: A rare glimpse on the terminal stage of subduction. Earth and Planetary Science Letters, 2017, 461, 127-140.	4.4	71
9	Architecture and tectono-stratigraphic evolution of the intramontane Baza Basin (Bétics, SE-Spain): Constraints from seismic imaging. Tectonophysics, 2017, 709, 69-84.	2.2	19
10	Submarine permafrost depth from ambient seismic noise. Geophysical Research Letters, 2015, 42, 7581-7588.	4.0	27
11	Seismotectonic study of the Fergana Region (Southern Kyrgyzstan): distribution and kinematics of local seismicity. Earth, Planets and Space, 2015, 67, .	2.5	17
12	Detailed fault structure of the Tarutung Pull-Apart Basin in Sumatra, Indonesia, derived from local earthquake data. Journal of Asian Earth Sciences, 2014, 96, 123-131.	2.3	22
13	Accretionary nature of the crust of Central and East Java (Indonesia) revealed by local earthquake travel-time tomography. Journal of Asian Earth Sciences, 2014, 96, 287-295.	2.3	16
14	Detailed seismicity analysis revealing the dynamics of the southern Dead Sea area. Journal of Seismology, 2014, 18, 731-748.	1.3	11
15	Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake. Nature Geoscience, 2014, 7, 292-296.	12.9	122
16	Seismic Vp and Vp/Vs structure of the geothermal area around Tarutung (North Sumatra, Indonesia) derived from local earthquake tomography. Journal of Volcanology and Geothermal Research, 2013, 260, 27-42.	2.1	51
17	Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography. Earth and Planetary Science Letters, 2013, 384, 165-177.	4.4	91
18	Three-dimensional upper crustal structure of the geothermal system in Tarutung (North Sumatra,) Tj ETQq0 0 0 2037-2049.	rgBT /Ovei 2.4	rlock 10 Tf 50 13

2037-2049.

#	Article	IF	CITATIONS
19	Imaging fluid-related subduction processes beneath Central Java (Indonesia) using seismic attenuation tomography. Tectonophysics, 2013, 590, 175-188.	2.2	40
20	Geometry of the Pamirâ€Hindu Kush intermediateâ€depth earthquake zone from local seismic data. Journal of Geophysical Research: Solid Earth, 2013, 118, 1438-1457.	3.4	156
21	Seismic imaging of subducting continental lower crust beneath the Pamir. Earth and Planetary Science Letters, 2013, 375, 101-112.	4.4	158
22	The 2010 $\langle i \rangle M \langle i \rangle \langle sub \rangle w \langle sub \rangle $ 8.8 Maule, Chile earthquake: Nucleation and rupture propagation controlled by a subducted topographic high. Geophysical Research Letters, 2012, 39, .	4.0	26
23	High-resolution local earthquake tomography of the southern Dead Sea area. Geophysical Journal International, 2012, , no-no.	2.4	13
24	Aftershock seismicity of the 2010 Maule Mw=8.8, Chile, earthquake: Correlation between coâ€seismic slip models and aftershock distribution?. Geophysical Research Letters, 2012, 39, .	4.0	62
25	Nearâ€surface properties of an active fault derived by joint interpretation of different geophysical methods ―the Arava/Araba Fault in the Middle East. Near Surface Geophysics, 2012, 10, 381-390.	1.2	3
26	Microseismicity distribution in the southern Dead Sea basin and its implications on the structure of the basin. Geophysical Journal International, 2012, 188, 873-878.	2.4	24
27	Landslides in southern Kyrgyzstan: Understanding tectonic controls. Eos, 2011, 92, 169-170.	0.1	15
28	Hengill geothermal volcanic complex (Iceland) characterized by integrated geophysical observations. Geothermics, 2011, 40, 1-24.	3.4	61
29	Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique. Geophysical Journal International, 2010, 183, 1485-1500.	2.4	22
30	Lake Toba volcano magma chamber imaged by ambient seismic noise tomography. Geophysical Research Letters, 2010, 37, .	4.0	90
31	Anatomy of the Dead Sea Transform from lithospheric to microscopic scale. Reviews of Geophysics, 2009, 47, .	23.0	56
32	Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?. Geophysical Research Letters, 2009, 36, .	4.0	78
33	Structure of the seismogenic zone of the southcentral Chilean margin revealed by local earthquake traveltime tomography. Journal of Geophysical Research, 2009, 114, .	3.3	62
34	Combining satellite and seismic images to analyse the shallow structure of the Dead Sea Transform near the DESERT transect. International Journal of Earth Sciences, 2008, 97, 153-169.	1.8	18
35	First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. Tectonophysics, 2008, 455, 14-24.	2.2	124
36	Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada). Geophysical Research Letters, 2008, 35, .	4.0	25

#	Article	IF	CITATIONS
37	Shallow architecture of the Wadi Araba fault (Dead Sea Transform) from high-resolution seismic investigations. Tectonophysics, 2007, 432, 37-50.	2.2	30
38	Seismicity and geometry of the south Chilean subduction zone (41.5°S–43.5°S): Implications for controlling parameters. Geophysical Research Letters, 2007, 34, .	4.0	55
39	Interaction between forearc and oceanic plate at the south-central Chilean margin as seen in local seismic data. Geophysical Research Letters, 2006, 33, .	4.0	59
40	Seismological Studies of the Central and Southern Andes. , 2006, , 443-457.		24
41	Partial Melting in the Central Andean Crust: a Review of Geophysical, Petrophysical, and Petrologic Evidence. , 2006, , 459-474.		51
42	Simultaneous inversion of shear wave splitting observations from seismic arrays. Journal of Geophysical Research, 2005, 110 , .	3.3	22
43	Studying the seismogenic coupling zone with a passive seismic array. Eos, 2005, 86, 293.	0.1	11
44	Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform. Geophysical Research Letters, 2005, 32, .	4.0	29
45	Forearc decoupling of guided waves in the Chile-Peru subduction zone. Geophysical Research Letters, 2005, 32, .	4.0	9
46	The crustal structure of the Dead Sea Transform. Geophysical Journal International, 2004, 156, 655-681.	2.4	107
47	Imaging the Dead Sea Transform with scattered seismic waves. Geophysical Journal International, 2004, 158, 179-186.	2.4	22
48	Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean) Tj ETQq0 0 0 rgBT	193erlock	≀ 10 Jf 50 30 128
49	Modeling of seismic guided waves at the Dead Sea Transform. Journal of Geophysical Research, 2003, 108, .	3.3	47
50	Coincident anomalies of seismic attenuation and electrical resistivity beneath the southern Bolivian Altiplano plateau. Geophysical Research Letters, 2003, 30, .	4.0	37
51	Guided waves propagating in subducted oceanic crust. Journal of Geophysical Research, 2003, 108, .	3.3	39
52	Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth and Planetary Science Letters, 2003, 215, 105-119.	4.4	162
53	Attenuation tomography in the western central Andes: A detailed insight into the structure of a magmatic arc. Journal of Geophysical Research, 2001, 106, 11151-11167.	3.3	115
54	Title is missing!. Journal of Seismology, 2001, 5, 157-179.	1.3	72

#	Article	IF	CITATIONS
55	Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature, 2000, 408, 958-961.	27.8	337
56	The crustal structure beneath the Central Andean forearc and magmatic arc as derived from seismic studies $\hat{a} \in \mathbb{C}$ the PISCO 94 experiment in northern Chile ($21\hat{A}^{\circ}\hat{a} \in \mathbb{C}$ 23 \hat{A}° S). Journal of South American Earth Sciences, 1999, 12, 237-260.	1.4	58
57	The Central Andean Altiplano-Puna magma body. Geophysical Research Letters, 1999, 26, 783-786.	4.0	175
58	GIPP: Geophysical Instrument Pool Potsdam. Journal of Large-scale Research Facilities JLSRF, 0, 2, A64.	0.0	5
59	DEPAS (Deutscher GerÃæ-Pool für amphibische Seismologie): German Instrument Pool for Amphibian Seismology. Journal of Large-scale Research Facilities JLSRF, 0, 3, A122.	0.0	16