Cinzia Corinaldesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3823203/publications.pdf

Version: 2024-02-01

120 papers

7,542 citations

57758 44 h-index 82 g-index

124 all docs

 $\begin{array}{c} 124 \\ \text{docs citations} \end{array}$

times ranked

124

9006 citing authors

#	Article	IF	CITATIONS
1	Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss. Current Biology, 2008, $18,1$ -8.	3.9	641
2	Sunscreens Cause Coral Bleaching by Promoting Viral Infections. Environmental Health Perspectives, 2008, 116, 441-447.	6.0	426
3	Major viral impact on the functioning of benthic deep-sea ecosystems. Nature, 2008, 454, 1084-1087.	27.8	366
4	Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE, 2010, 5, e11832.	2.5	321
5	Marine viruses and global climate change. FEMS Microbiology Reviews, 2011, 35, 993-1034.	8.6	297
6	Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Antioxidants, 2017, 6, 96.	5.1	250
7	Simultaneous Recovery of Extracellular and Intracellular DNA Suitable for Molecular Studies from Marine Sediments. Applied and Environmental Microbiology, 2005, 71, 46-50.	3.1	227
8	Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica). Marine Pollution Bulletin, 2017, 122, 161-165.	5.0	210
9	Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Molecular Ecology, 2008, 17, 3939-3951.	3.9	193
10	Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status. Frontiers in Marine Science, $2016, 3, .$	2.5	163
11	The deep-sea under global change. Current Biology, 2017, 27, R461-R465.	3.9	150
12	Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments. Molecular Ecology, 2011, 20, 642-654.	3.9	148
13	Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nature Ecology and Evolution, 2020, 4, 181-192.	7.8	142
14	Microplastic accumulation in benthic invertebrates in Terra Nova Bay (Ross Sea, Antarctica). Environment International, 2020, 137, 105587.	10.0	140
15	Degradation and Turnover of Extracellular DNA in Marine Sediments: Ecological and Methodological Considerations. Applied and Environmental Microbiology, 2004, 70, 4384-4386.	3.1	139
16	Viriobenthos in freshwater and marine sediments: a review. Freshwater Biology, 2008, 53, 1186-1213.	2.4	125
17	A bacterial community-based index to assess the ecological status of estuarine and coastal environments. Marine Pollution Bulletin, 2017, 114, 679-688.	5.0	120
18	Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Marine Drugs, 2017, 15, 118.	4.6	114

#	Article	IF	Citations
19	Virus-mediated archaeal hecatomb in the deep seafloor. Science Advances, 2016, 2, e1600492.	10.3	107
20	Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora) Tj ETQq0 0 () rgBT/Ove	rlock 10 Tf 50
21	Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME Journal, 2020, 14, 740-756.	9.8	99
22	Metagenetic tools for the census of marine meiofaunal biodiversity: An overview. Marine Genomics, 2015, 24, 11-20.	1.1	93
23	Viruses, prokaryotes and DNA in the sediments of a deep-hypersaline anoxic basin (DHAB) of the Mediterranean Sea. Environmental Microbiology, 2005, 7, 586-592.	3.8	89
24	New perspectives in benthic deep-sea microbial ecology. Frontiers in Marine Science, 2015, 2, .	2.5	86
25	Large-Scale Spatial Distribution of Virioplankton in the Adriatic Sea: Testing the Trophic State Control Hypothesis. Applied and Environmental Microbiology, 2003, 69, 2664-2673.	3.1	78
26	Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2014-9.	7.1	77
27	Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?. Scientific Reports, 2015, 5, 14883.	3.3	75
28	Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach. Scientific Reports, 2017, 7, 11475.	3.3	75
29	Unveiling the Biodiversity of Deep-Sea Nematodes through Metabarcoding: Are We Ready to Bypass the Classical Taxonomy?. PLoS ONE, 2015, 10, e0144928.	2.5	70
30	Red coral extinction risk enhanced by ocean acidification. Scientific Reports, 2013, 3, 1457.	3.3	69
31	Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133299.	2.6	69
32	Multiple impacts of microplastics can threaten marine habitat-forming species. Communications Biology, 2021, 4, 431.	4.4	69
33	Prokaryote Diversity and Virus Abundance in Shallow Hydrothermal Vents of the Mediterranean Sea (Panarea Island) and the Pacific Ocean (North Sulawesi-Indonesia). Microbial Ecology, 2008, 55, 626-639.	2.8	68
34	Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods. Science of the Total Environment, 2022, 818, 151783.	8.0	62
35	Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Critical Reviews in Microbiology, 2016, 42, 883-904.	6.1	61
36	Towards a better quantitative assessment of the relevance of deep-sea viruses, Bacteria and Archaea in the functioning of the ocean seafloor. Aquatic Microbial Ecology, 2015, 75, 81-90.	1.8	60

#	Article	IF	Citations
37	Sunscreen Products Increase Virus Production Through Prophage Induction in Marine Bacterioplankton. Microbial Ecology, 2003, 45, 109-118.	2.8	56
38	Viral abundance and distribution in mesopelagic and bathypelagic waters of the Mediterranean Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1209-1220.	1.4	55
39	Prokaryote diversity and viral production in deep-sea sediments and seamounts. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 738-747.	1.4	52
40	Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems. Science Advances, 2016, 2, e1500961.	10.3	52
41	Viral infection plays a key role in extracellular DNA dynamics in marine anoxic systems. Limnology and Oceanography, 2007, 52, 508-516.	3.1	51
42	Viruses as new agents of organomineralization in the geological record. Nature Communications, 2014, 5, 4298.	12.8	51
43	Viral decay and viral production rates in continental-shelf and deep-sea sediments of the Mediterranean Sea. FEMS Microbiology Ecology, 2010, 72, 208-218.	2.7	49
44	Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiology Letters, 2017, 364, .	1.8	49
45	The deep sea: The new frontier for ecological restoration. Marine Policy, 2019, 108, 103642.	3.2	48
46	Sunscreen products impair the early developmental stages of the sea urchin Paracentrotus lividus. Scientific Reports, 2017, 7, 7815.	3.3	47
47	Towards a marine strategy for the deep Mediterranean Sea: Analysis of current ecological status. Marine Policy, 2020, 112, 103781.	3.2	46
48	Exo-enzymatic activities and dissolved organic pools in relation with mucilage development in the Northern Adriatic Sea. Science of the Total Environment, 2005, 353, 189-203.	8.0	44
49	Relationships between Meiofaunal Biodiversity and Prokaryotic Heterotrophic Production in Different Tropical Habitats and Oceanic Regions. PLoS ONE, 2014, 9, e91056.	2.5	44
50	The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments. BMC Biology, 2016, 14, 43.	3.8	43
51	Major consequences of an intense dense shelf water cascading event on deep-sea benthic trophic conditions and meiofaunal biodiversity. Biogeosciences, 2013, 10, 2659-2670.	3.3	42
52	A submarine volcanic eruption leads to a novel microbial habitat. Nature Ecology and Evolution, 2017, 1, 144.	7.8	42
53	Extracellular DNA as a genetic recorder of microbial diversity in benthic deep-sea ecosystems. Scientific Reports, 2018, 8, 1839.	3.3	41
54	Functional response to food limitation can reduce the impact of global change in the deepâ€sea benthos. Global Ecology and Biogeography, 2017, 26, 1008-1021.	5.8	40

#	Article	IF	CITATIONS
55	Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea. Progress in Oceanography, 2018, 168, 57-64.	3.2	39
56	Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 92, 97-106.	1.4	38
57	Assessing viral taxonomic composition in benthic marine ecosystems: reliability and efficiency of different bioinformatic tools for viral metagenomic analyses. Scientific Reports, 2016, 6, 28428.	3.3	36
58	Mud volcanoes in the Mediterranean Sea are hot spots of exclusive meiobenthic species. Progress in Oceanography, 2011, 91, 260-272.	3.2	35
59	Viruses and marine pollution. Marine Pollution Bulletin, 2003, 46, 301-304.	5.0	34
60	Highly Contaminated Marine Sediments Can Host Rare Bacterial Taxa Potentially Useful for Bioremediation. Frontiers in Microbiology, 2021, 12, 584850.	3.5	33
61	Disentangling the effect of viruses and nanoflagellates on prokaryotes in bathypelagic waters of the Mediterranean Sea. Marine Ecology - Progress Series, 2010, 418, 73-85.	1.9	33
62	Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes. ISME Journal, 2012, 6, 1250-1259.	9.8	32
63	Biodiversity of Prokaryotic Communities Associated with the Ectoderm of Ectopleura crocea (Cnidaria, Hydrozoa). PLoS ONE, 2012, 7, e39926.	2.5	32
64	Early diagenesis and trophic role of extracellular DNA in different benthic ecosystems. Limnology and Oceanography, 2007, 52, 1710-1717.	3.1	31
65	Chemical contamination can promote turnover diversity of benthic prokaryotic assemblages: The case study of the Bagnoli-Coroglio bay (southern Tyrrhenian Sea). Marine Environmental Research, 2020, 160, 105040.	2.5	31
66	Impact of historical contamination on meiofaunal assemblages: The case study of the Bagnoli-Coroglio Bay (southern Tyrrhenian Sea). Marine Environmental Research, 2020, 156, 104907.	2.5	31
67	Determination of viral production in aquatic sediments using the dilution-based approach. Nature Protocols, 2009, 4, 1013-1022.	12.0	30
68	Aquaculture impact on benthic microbes and organic matter cycling in coastal mediterranean sediments: A synthesis. Chemistry and Ecology, 2003, 19, 59-65.	1.6	27
69	Impact of heavy metals and PCBs on marine picoplankton. Environmental Toxicology, 2006, 21, 541-551.	4.0	27
70	Impact of aquaculture on benthic virus–prokaryote interactions in the Mediterranean Sea. Water Research, 2013, 47, 1156-1168.	11.3	27
71	High potential for temperate viruses to drive carbon cycling in chemoautotrophyâ€dominated shallowâ€water hydrothermal vents. Environmental Microbiology, 2017, 19, 4432-4446.	3.8	24
72	Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. Diversity, 2019, 11, 113.	1.7	24

#	Article	IF	CITATIONS
73	Patterns and drivers of bacterial α―and βâ€diversity across vertical profiles from surface to subsurface sediments. Environmental Microbiology Reports, 2013, 5, 731-739.	2.4	23
74	Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus–prokaryote interactions and functions. Frontiers in Microbiology, 2015, 6, 935.	3.5	22
75	A high biodiversity mitigates the impact of ocean acidification on hard-bottom ecosystems. Scientific Reports, 2020, 10, 2948.	3.3	21
76	From virus isolation to metagenome generation for investigating viral diversity in deep-sea sediments. Scientific Reports, 2017, 7, 8355.	3.3	20
77	Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 391.	3.5	20
78	Anthropogenic noise and biological sounds in a heavily industrialized coastal area (Gulf of Naples,) Tj ETQq0 0 0 rg	gBT/Overlo 2.5	၁၄ <u>k</u> 10 Tf 50
79	Structure and interactions within the pelagic microbial food web (from viruses to microplankton) across environmental gradients in the Mediterranean Sea. Global Biogeochemical Cycles, 2013, 27, 1034-1045.	4.9	19
80	Enhanced viral activity and dark CO ₂ fixation rates under oxygen depletion: the case study of the marine Lake Rogoznica. Environmental Microbiology, 2016, 18, 4511-4522.	3.8	19
81	Planktonic prokaryote and protist communities in a submarine canyon system in the Ligurian Sea (NW) Tj ETQq1	1 0.78431 3.2	4 ₁ ggBT /Ove
82	Early-stage anomalies in the sea urchin (Paracentrotus lividus) as bioindicators of multiple stressors in the marine environment: Overview and future perspectives. Environmental Pollution, 2021, 287, 117608.	7.5	19
83	Viruses, prokaryotes and biochemical composition of organic matter in different types of mucilage aggregates. Aquatic Microbial Ecology, 2007, 49, 15-23.	1.8	19
84	Viral Infections Boost Prokaryotic Biomass Production and Organic C Cycling in Hadal Trench Sediments. Frontiers in Microbiology, 2019, 10, 1952.	3.5	18
85	Pelagic-Benthic Coupling and Diagenesis of Nucleic Acids in a Deep-Sea Continental Margin and an Open-Slope System of the Eastern Mediterranean. Applied and Environmental Microbiology, 2005, 71, 6070-6076.	3.1	17
86	Restoration of <i>Cymodocea nodosa</i> seagrass meadows: efficiency and ecological implications. Restoration Ecology, 2021, 29, e13313.	2.9	17
87	Impact of historical sulfide mine tailings discharge on meiofaunal assemblages (Portmán Bay,) Tj ETQq1 1 0.7843	314.rgBT/0 8.ogBT/0	Dygrlock 10
88	Trophic state of benthic deep-sea ecosystems from two different continental margins off Iberia. Biogeosciences, 2013, 10, 2945-2957.	3.3	15
89	Quantification of Viral and Prokaryotic Production Rates in Benthic Ecosystems: A Methods Comparison. Frontiers in Microbiology, 2016, 7, 1501.	3.5	15
90	CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments. Marine Environmental Research, 2016, 122, 158-168.	2.5	15

#	Article	IF	Citations
91	Marine archaea and archaeal viruses under global change. F1000Research, 2017, 6, 1241.	1.6	14
92	Drivers of Bacterial \hat{l} and \hat{l}^2 -Diversity Patterns and Functioning in Subsurface Hadal Sediments. Frontiers in Microbiology, 2019, 10, 2609.	3.5	14
93	High diversity of benthic bacterial and archaeal assemblages in deep-Mediterranean canyons and adjacent slopes. Progress in Oceanography, 2019, 171, 154-161.	3.2	14
94	Organic enrichment can increase the impact of microplastics on meiofaunal assemblages in tropical beach systems. Environmental Pollution, 2022, 292, 118415.	7.5	14
95	Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Science of the Total Environment, 2022, 823, 153701.	8.0	13
96	Assessing the efficiency and eco-sustainability of bioremediation strategies for the reclamation of highly contaminated marine sediments. Marine Environmental Research, 2020, 162, 105101.	2.5	11
97	Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest. Marine Drugs, 2020, 18, 91.	4.6	11
98	Diversity and spatial distribution of metal-reducing bacterial assemblages in groundwaters of different redox conditions. International Microbiology, 2009, 12, 153-9.	2.4	11
99	Limited impact of beach nourishment on macrofaunal recruitment/settlement in a site of community interest in coastal area of the Adriatic Sea (Mediterranean Sea). Marine Pollution Bulletin, 2018, 128, 259-266.	5.0	10
100	Ocean Acidification Induces Changes in Virus–Host Relationships in Mediterranean Benthic Ecosystems. Microorganisms, 2021, 9, 769.	3.6	10
101	Abyssal fauna, benthic microbes, and organic matter quality across a range of trophic conditions in the western Pacific ocean. Progress in Oceanography, 2021, 195, 102591.	3.2	10
102	In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Global Change Biology, 2021, 27, 6139-6155.	9.5	7
103	High rates of viral lysis stimulate prokaryotic turnover and C recycling in bathypelagic waters of a Ligurian canyon (Mediterranean Sea). Progress in Oceanography, 2019, 171, 70-75.	3.2	6
104	The Paradox of an Unpolluted Coastal Site Facing a Chronically Contaminated Industrial Area. Frontiers in Marine Science, 2022, 8, .	2.5	6
105	Multiple declines and recoveries of Adriatic seagrass meadows over forty years of investigation. Marine Pollution Bulletin, 2020, 161, 111804.	5.0	5
106	Reply to: Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation. Nature Ecology and Evolution, 2021, 5, 30-31.	7.8	5
107	Effects of Local Acidification on Benthic Communities at Shallow Hydrothermal Vents of the Aeolian Islands (Southern Tyrrhenian, Mediterranean Sea). Biology, 2022, 11, 321.	2.8	5
108	Impact of hypersaline brines on benthic meio- and macrofaunal assemblages: A comparison from two desalination plants of the Mediterranean Sea. Desalination, 2022, 532, 115756.	8.2	5

#	Article	IF	CITATIONS
109	Molecular Tools for the Analysis of DNA in Marine Environments. , 0, , 105-126.		4
110	Viral metagenomics: a new and complementary tool for environmental quality assessment. Chemistry and Ecology, 2012, 28, 497-501.	1.6	4
111	GLOSSary: the GLobal Ocean 16S subunit web accessible resource. BMC Bioinformatics, 2018, 19, 443.	2.6	4
112	Impact of the biocide Irgarol on meiofauna and prokaryotes from the sediments of the Bizerte lagoon—an experimental study. Environmental Science and Pollution Research, 2016, 23, 7712-7721.	5. 3	3
113	Local Environmental Conditions Promote High Turnover Diversity of Benthic Deep-Sea Fungi in the Ross Sea (Antarctica). Journal of Fungi (Basel, Switzerland), 2022, 8, 65.	3.5	3
114	Feasibility of the Sabellarid Reef Habitat Restoration. Frontiers in Marine Science, 2022, 9, .	2.5	3
115	Impact of resuspended mine tailings on benthic biodiversity and ecosystem processes: The case study of Portmán Bay, Western Mediterranean Sea, Spain. Environmental Pollution, 2022, 301, 119021.	7.5	3
116	Rapid response of benthic deep-sea microbes (viruses and prokaryotes) to an intense dense shelf water cascading event in a submarine canyon of the NW Mediterranean Sea. Progress in Oceanography, 2018, 168, 35-42.	3.2	2
117	Knowledge and implications of global change in the oceans for biology, ecology, and ecosystem services., 0,, 84-108.		1
118	Marine Biology. Biodiversity and Functioning of Marine Ecosystems: Scientific Advancements and New Perspectives for Preserving Marine Life., 2020, , 447-462.		1
119	Metazoan life in anoxic marine sediments. , 2020, , 89-100.		0
120	Changes in Coral-Forest Microbiomes Predict the Impact of Marine Heatwaves on Habitat-Forming Species Down to Mesophotic Depths. SSRN Electronic Journal, 0, , .	0.4	0