Kristopher McNeill

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3823046/kristopher-mcneill-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

164
papers9,401
citations53
h-index92
g-index190
ext. papers10,845
ext. citations8.3
avg, IF6.5
L-index

#	Paper	IF	Citations
164	Site-Specific Mineralization of a Polyester Hydrolysis Product in Natural Soil. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 1373-1378	8.3	O
163	Singlet Oxygen Quantum Yields in Environmental Waters. <i>Chemical Reviews</i> , 2021 , 121, 4100-4146	68.1	25
162	Photochemical fate of medetomidine in coastal and marine environments. <i>Water Research</i> , 2021 , 191, 116791	12.5	6
161	Kinetics and Pathways of the Aqueous Photolysis of Pharmaceutical Pollutants: A Versatile Laboratory or Remote Learning Investigation. <i>Journal of Chemical Education</i> , 2021 , 98, 2411-2418	2.4	0
160	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. <i>Photochemical and Photobiological Sciences</i> , 2021 , 20, 1-67	4.2	34
159	Factors affecting the mixed-layer concentrations of singlet oxygen in sunlit lakes. <i>Environmental Sciences: Processes and Impacts</i> , 2021 , 23, 1130-1145	4.3	2
158	Linking Triclosan's Structural Features to Its Environmental Fate and Photoproducts. <i>Environmental Science & Environmental & Environm</i>	10.3	7
157	UVB-irradiated Laboratory-generated Secondary Organic Aerosol Extracts Have Increased Cloud Condensation Nuclei Abilities: Comparison with Dissolved Organic Matter and Implications for the Photomineralization Mechanism. <i>Chimia</i> , 2020 , 74, 142-148	1.3	2
156	Dissolved Organic Matter Singlet Oxygen Quantum Yields: Evaluation Using Time-Resolved Singlet Oxygen Phosphorescence. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	13
155	UV/Vis photochemistry database: Structure, content and applications. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2020 , 253,	2.1	9
154	Substituent Effects on the Direct Photolysis of Benzotrifluoride Derivatives. <i>Environmental Science & Environmental Science</i>	10.3	4
153	Mechanistic Insights into Dissolved Organic Sulfur Photomineralization through the Study of Cysteine Sulfinic Acid. <i>Environmental Science & Environmental Science & Environme</i>	10.3	4
152	Quantification of Synthetic Polyesters from Biodegradable Mulch Films in Soils. <i>Environmental Science & Environmental Science</i>	10.3	21
151	Photodegradation of Fludioxonil and Other Pyrroles: The Importance of Indirect Photodegradation for Understanding Environmental Fate and Photoproduct Formation. <i>Environmental Science & Technology</i> , 2019 , 53, 11240-11250	10.3	19
150	Differences in photochemistry between seawater and freshwater for two natural organic matter samples. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 28-39	4.3	9
149	Singlet Oxygen Photooxidation of Peptidic Oxazoles and Thiazoles. <i>Journal of Organic Chemistry</i> , 2019 , 84, 2439-2447	4.2	7
148	Development of N-Cyclopropylanilines to Probe the Oxidative Properties of Triplet-State Photosensitizers. <i>Environmental Science & Environmental Scien</i>	10.3	6

(2018-2019)

147	Assessing the environmental transformation of nanoplastic through C-labelled polymers. <i>Nature Nanotechnology</i> , 2019 , 14, 301-303	28.7	19	
146	Photochemical Transformation of Poly(butylene adipate- co-terephthalate) and Its Effects on Enzymatic Hydrolyzability. <i>Environmental Science & Enzymatic Hydrolyzability</i> . Environmental Science & Enzymatic Hydrolyzability. Environmental Science & Enzymatic Hydrolyzability.	10.3	25	
145	Updated and validated solar irradiance reference spectra for estimating environmental photodegradation rates. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 427-437	4.3	26	
144	Dos and Do Nots When Assessing the Biodegradation of Plastics. <i>Environmental Science & Environmental </i>	10.3	47	
143	Intramolecular [2 + 2] Photocycloaddition of Altrenogest: Confirmation of Product Structure, Theoretical Mechanistic Insight, and Bioactivity Assessment. <i>Journal of Organic Chemistry</i> , 2019 , 84, 113	3 <i>6</i> 6 - 11	3 7 1	
142	Sorbic Acid as a Triplet Probe: Reactivity of Oxidizing Triplets in Dissolved Organic Matter by Direct Observation of Aromatic Amine Oxidation. <i>Environmental Science & Environmental Science & Envir</i>	96 ^{0.3}	9	
141	Reactive Oxygen Species Production from Secondary Organic Aerosols: The Importance of Singlet Oxygen. <i>Environmental Science & Environmental Science &</i>	10.3	21	
140	Furan Carboxamides as Model Compounds To Study the Competition between Two Modes of Indirect Photochemistry. <i>Environmental Science & Environmental Sc</i>	10.3	9	
139	Sorbic Acid as a Triplet Probe: Triplet Energy and Reactivity with Triplet-State Dissolved Organic Matter via O Phosphorescence. <i>Environmental Science & Environmental Scienc</i>	10.3	17	
138	Photochemical Production of Sulfate and Methanesulfonic Acid from Dissolved Organic Sulfur. <i>Environmental Science & Dissolved Organic Sulfur</i> . 2019, 53, 13191-13200	10.3	20	
137	Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12397-12412	6.8	18	
136	A streamlined workflow to study direct photodegradation kinetic and transformation products for persistence assessment of a fragrance ingredient in natural waters. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1713-1721	4.3	2	
135	Chlorinated Ethene Reactivity with Vitamin B12Is Governed by Cobalamin Chloroethylcarbanions as Crossroads of Competing Pathways. <i>ACS Catalysis</i> , 2018 , 8, 3054-3066	13.1	22	
134	Sustainable Polyester Elastomers from Lactones: Synthesis, Properties, and Enzymatic Hydrolyzability. <i>Journal of the American Chemical Society</i> , 2018 , 140, 963-973	16.4	64	
133	Transformation of chlorinated paraffins to olefins during metal work and thermal exposure - Deconvolution of mass spectra and kinetics. <i>Chemosphere</i> , 2018 , 194, 803-811	8.4	21	
132	Non-Singlet Oxygen Kinetic Solvent Isotope Effects in Aquatic Photochemistry. <i>Environmental Science & Environmental &</i>	10.3	16	
131	Biodegradation of synthetic polymers in soils: Tracking carbon into CO and microbial biomass. <i>Science Advances</i> , 2018 , 4, eaas9024	14.3	130	
130	Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1089-1122	4.3	131	

129	Dealing with strong mass interferences of chlorinated paraffins and their transformation products: An analytical guide. <i>TrAC - Trends in Analytical Chemistry</i> , 2018 , 106, 116-124	14.6	32
128	Singlet Oxygen Phosphorescence as a Probe for Triplet-State Dissolved Organic Matter Reactivity. <i>Environmental Science & Dissolved Organic Matter Reactivity</i> .	10.3	39
127	The Case Against Charge Transfer Interactions in Dissolved Organic Matter Photophysics. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	42
126	Analysis of Medium-Chain and Long-Chain Chlorinated Paraffins: The Urgent Need for More Specific Analytical Standards. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 708-717	11	39
125	Thiouridine residues in tRNAs are responsible for a synergistic effect of UVA and UVB light in photoinactivation of Escherichia coli. <i>Environmental Microbiology</i> , 2017 , 19, 434-442	5.2	24
124	High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring Cohydrolysis of a Polyester-Embedded Fluorogenic Probe. <i>Environmental Science & Environmental Science & En</i>	10.3	19
123	Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: effect of temperature, pH, and salt content. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 507-516	4.3	95
122	Environmental photochemistry of fenamate NSAIDs and their radical intermediates. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 656-665	4.3	17
121	Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility. <i>Environmental Science & Enzyme Active Science & Enzyme Scie</i>	10.3	41
120	Deconvolution of Mass Spectral Interferences of Chlorinated Alkanes and Their Thermal Degradation Products: Chlorinated Alkenes. <i>Analytical Chemistry</i> , 2017 , 89, 5923-5931	7.8	39
119	Distribution of intermediate host snails of schistosomiasis and fascioliasis in relation to environmental factors during the dry season in the Tchologo region, Cle dlvoire. <i>Advances in Water Resources</i> , 2017 , 108, 386-396	4.7	4
118	Triplet-State Dissolved Organic Matter Quantum Yields and Lifetimes from Direct Observation of Aromatic Amine Oxidation. <i>Environmental Science & Environmental Science & Envi</i>	10.3	31
117	Aquatic indirect photochemical transformations of natural peptidic thiols: impact of thiol properties, solution pH, solution salinity and metal ions. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 1518-1527	4.3	13
116	The Florence Statement on Triclosan and Triclocarban. <i>Environmental Health Perspectives</i> , 2017 , 125, 064501	8.4	104
115	Reductive Outer-Sphere Single Electron Transfer Is an Exception Rather than the Rule in Natural and Engineered Chlorinated Ethene Dehalogenation. <i>Environmental Science & Environmental Science & Env</i>	10.3	22
114	Fluorescent Molecular Probes for Detection of One-Electron Oxidants Photochemically Generated by Dissolved Organic Matter. <i>Environmental Science & Environmental Science & En</i>	10.3	6
113	Polyol Structure Influences Enzymatic Hydrolysis of Bio-Based 2,5-Furandicarboxylic Acid (FDCA) Polyesters. <i>Biotechnology Journal</i> , 2017 , 12, 1600741	5.6	22
112	Magnitude and Mechanism of Siderophore-Mediated Competition at Low Iron Solubility in the Pyochelin System. <i>Frontiers in Microbiology</i> , 2017 , 8, 1964	5.7	22

111	Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. <i>Scientific Reports</i> , 2016 , 6, 36246	4.9	56
110	Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics. <i>Environmental Science & Enp. Technology</i> , 2016 , 50, 197-206	10.3	24
109	Environmental Photochemistry of Altrenogest: Photoisomerization to a Bioactive Product with Increased Environmental Persistence via Reversible Photohydration. <i>Environmental Science & Technology</i> , 2016 , 50, 7480-8	10.3	16
108	Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter. <i>Environmental Science & Dissolved Organic Matter</i> . <i>Environmental Science & Dissolved Organic Matter</i> .	10.3	40
107	Photooxidation of the Antimicrobial, Nonribosomal Peptide Bacitracin A by Singlet Oxygen under Environmentally Relevant Conditions. <i>Environmental Science & Environmental Sci</i>	10.3	21
106	Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 1381-1399	4 ∙3	232
105	Controlling factors in the rates of oxidation of anilines and phenols by triplet methylene blue in aqueous solution. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 3233-43	2.8	33
104	Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: amino acids play a central role. <i>Microbial Ecology</i> , 2015 , 69, 554-66	4.4	26
103	Aquatic photochemical kinetics of benzotriazole and structurally related compounds. <i>Environmental Sciences: Processes and Impacts</i> , 2015 , 17, 939-46	4.3	24
102	Isotope fractionation associated with the direct photolysis of 4-chloroaniline. <i>Environmental Science & Environmental Science</i>	10.3	20
101	Triclosan, chlorinated triclosan derivatives, and hydroxylated polybrominated diphenyl ethers (OH-BDEs) in wastewater effluents. <i>Environmental Science: Water Research and Technology</i> , 2015 , 1, 316	-32 5	2
100	Isotope Fractionation Associated with the Indirect Photolysis of Substituted Anilines in Aqueous Solution. <i>Environmental Science & Environmental Scie</i>	10.3	13
99	Assessing the Indirect Photochemical Transformation of Dissolved Combined Amino Acids through the Use of Systematically Designed Histidine-Containing Oligopeptides. <i>Environmental Science & Environmental Science</i>	10.3	12
98	Isotope Fractionation Associated with the Photochemical Dechlorination of Chloroanilines. <i>Environmental Science & Environmental Science & Environment</i>	10.3	18
97	Quantification of Hydroxylated Polybrominated Diphenyl Ethers (OH-BDEs), Triclosan, and Related Compounds in Freshwater and Coastal Systems. <i>PLoS ONE</i> , 2015 , 10, e0138805	3.7	11
96	Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter. <i>Environmental Science & Environmental Science & Environment</i>	o ^{10.3}	31
95	Photochemical production of singlet oxygen from particulate organic matter. <i>Environmental Science & Environmental Science & E</i>	10.3	45
94	Environmental photoinactivation of extracellular phosphatases and the effects of dissolved organic matter. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 889-96	10.3	11

93	Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 807-2	24.3	68
92	Habitat structure and the evolution of diffusible siderophores in bacteria. <i>Ecology Letters</i> , 2014 , 17, 15.	3 6 - 4 4	67
91	Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan. <i>Environmental Science & Environmental Science </i>	10.3	110
90	Dehalogenation of aromatics by nucleophilic aromatic substitution. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 10904-11	10.3	27
89	Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances. <i>Environmental Science & Environmental & Environ</i>	10.3	147
88	Environmental Photochemistry of Amino Acids, Peptides and Proteins. <i>Chimia</i> , 2014 , 68, 812-7	1.3	32
87	On the use of hydroxyl radical kinetics to assess the number-average molecular weight of dissolved organic matter. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	35
86	Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation. <i>Environmental Science & Environmental & Environmenta</i>	10.3	53
85	Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: evidence for abiotic back-transformation. <i>Environmental Science & Environmental Science & Environm</i>	10.3	138
84	Sunlight inactivation of human viruses and bacteriophages in coastal waters containing natural photosensitizers. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	80
83	Quenching of excited triplet states by dissolved natural organic matter. <i>Environmental Science & Environmental & Envi</i>	10.3	94
82	Quantification of triclosan, chlorinated triclosan derivatives, and their dioxin photoproducts in lacustrine sediment cores. <i>Environmental Science & Environmental Science & </i>	10.3	78
81	Thermochemical factors affecting the dehalogenation of aromatics. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 14194-203	10.3	25
80	Dechlorination of chlorinated ethylenes by a photochemically generated iron(0) complex. <i>Dalton Transactions</i> , 2013 , 42, 10121-8	4.3	4
79	Direct photochemistry of three fluoroquinolone antibacterials: norfloxacin, ofloxacin, and enrofloxacin. <i>Water Research</i> , 2013 , 47, 439-48	12.5	153
78	Dark formation of hydroxyl radical in Arctic soil and surface waters. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 12860-7	10.3	125
77	Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. <i>Environmental Science & Environmental Science & Environme</i>	10.3	32
76	A tribute to Ren'P. Schwarzenbach. <i>Environmental Science & Environmental Scie</i>	10.3	

(2010-2013)

75	Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria: insights from dual element isotope analysis (13C/12C, 37Cl/35Cl). <i>Environmental Science & Environmental Science</i>	10.3	65
74	Halogenation of bisphenol-A, triclosan, and phenols in chlorinated waters containing iodide. <i>Environmental Science & Environmental Science & Environm</i>	10.3	49
73	Reactivity differences of combined and free amino acids: quantifying the relationship between three-dimensional protein structure and singlet oxygen reaction rates. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 14215-23	10.3	34
72	Aqueous oxidation of sulfonamide antibiotics: aromatic nucleophilic substitution of an aniline radical cation. <i>Chemistry - A European Journal</i> , 2013 , 19, 11216-23	4.8	45
71	Spatial and temporal distribution of singlet oxygen in Lake Superior. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 7222-9	10.3	79
70	Synthesis and reactivity of an isolable cobalt(I) complex containing a Ediketiminate-based acyclic tetradentate ligand. <i>Inorganic Chemistry</i> , 2012 , 51, 2079-85	5.1	11
69	Hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions. <i>Environmental Science & Environmental &</i>	10.3	34
68	Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	137
67	Methods for reactive oxygen species (ROS) detection in aqueous environments. <i>Aquatic Sciences</i> , 2012 , 74, 683-734	2.5	238
66	Photochemical formation of brominated dioxins and other products of concern from hydroxylated polybrominated diphenyl ethers (OH-PBDEs). <i>Environmental Science & amp; Technology</i> , 2012 , 46, 8174-	80 ^{0.3}	47
65	Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry. <i>Environmental Science & Environmental Sci</i>	10.3	72
64	Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. <i>Chemosphere</i> , 2011 , 84, 1238-43	8.4	34
63	Reprint of: Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. <i>Chemosphere</i> , 2011 , 85, 284-9	8.4	13
62	Vicinal dichlorine elimination at dichloroalkenes promoted by a well-defined iron(0) complex. <i>Dalton Transactions</i> , 2011 , 40, 1646-8	4.3	7
61	Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. <i>Environmental Science & Environmental </i>	10.3	158
60	Photosensitized amino acid degradation in the presence of riboflavin and its derivatives. <i>Environmental Science & Environmental Science & Environment</i>	10.3	88
59	Metal ion size and coordination mode in complexes of a Ediketiminate ligand with pendant quinoline arms. <i>Inorganica Chimica Acta</i> , 2011 , 369, 173-179	2.7	8
58	Electronic structures of $[n]$ -cyclacenes ($n = 612$) and short, hydrogen-capped, carbon nanotubes. Faraday Discussions, 2010 , 145, 507-521	3.6	34

57	Synthesis and characterization of pentaphosphino zero-valent iron complexes and their corresponding iron(II)-chloride and -hydride complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 3942-9	5.1	13
56	Investigating the Impact of Adding an Environmental Focus to a Developmental Chemistry Course. <i>Journal of Chemical Education</i> , 2010 , 87, 216-220	2.4	13
55	Dioxin photoproducts of triclosan and its chlorinated derivatives in sediment cores. <i>Environmental Science & Environmental Sc</i>	10.3	117
54	Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter. <i>Environmental Science & Environmental Science & En</i>	10.3	101
53	Terephthalate as a probe for photochemically generated hydroxyl radical. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 1658-65		167
52	Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-p-dioxins. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2555-63	3.8	100
51	Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach. <i>Environmental Science & Environmental Sci</i>	10.3	137
50	Response to Comment on "Indirect Photolysis of Perfluorochemicals: Hydroxyl Radical-Initiated Oxidation of N-Ethyl Perfluorooctane Sulfonamido Acetate (N-EtFOSAA) and Other Perfluoroalkanesulfonamides". <i>Environmental Science & Description (New York)</i> 2009, 43, 7997	10.3	2
49	Quantifying interactions between singlet oxygen and aquatic fulvic acids. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	71
48	Phosphinorhodium-Catalyzed Dehalogenation of Chlorinated and Fluorinated Ethylenes: Distinct Mechanisms with Triethylsilane and Dihydrogen. <i>Organometallics</i> , 2009 , 28, 5982-5991	3.8	34
47	Photochemical formation of halogenated dioxins from hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and chlorinated derivatives (OH-PBCDEs). <i>Environmental Science & Technology</i> , 2009 , 43, 4405-11	10.3	54
46	Indirect photolysis of perfluorochemicals: hydroxyl radical-initiated oxidation of N-ethyl perfluorooctane sulfonamido acetate (N-EtFOSAA) and other perfluoroalkanesulfonamides. <i>Environmental Science & Description (Note: Additional Science and Science amp; Technology, 2009</i> , 43, 3662-8	10.3	98
45	Photolysis of chlortetracycline on a clay surface. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 6932-7	5.7	23
44	Reconciling disparate models of the involvement of vinyl radicals in cobalamin-mediated dechlorination reactions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	12
43	Indirect photodegradation of dissolved free amino acids: the contribution of singlet oxygen and the differential reactivity of DOM from various sources. <i>Environmental Science & Environmental Scienc</i>	10.3	171
42	Dechlorination of chloroethylenes by cob(I)alamin and cobalamin model complexes. <i>Dalton Transactions</i> , 2008 , 4191-201	4.3	47
41	Microheterogeneous concentrations of singlet oxygen in natural organic matter isolate solutions. <i>Environmental Science & Environmental Science & Envi</i>	10.3	81
40	Association with natural organic matter enhances the sunlight-mediated inactivation of MS2 coliphage by singlet oxygen. <i>Environmental Science & Environmental Science & Envir</i>	10.3	85

(2005-2007)

39	Environmental photochemistry of tylosin: efficient, reversible photoisomerization to a less-active isomer, followed by photolysis. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 7062-8	5.7	26
38	Characterization of Co-C bonding in dichlorovinylcobaloxime complexes. <i>Inorganic Chemistry</i> , 2007 , 46, 1645-54	5.1	24
37	Unexpected products and reaction mechanisms of the aqueous chlorination of cimetidine. <i>Environmental Science & Environmental </i>	10.3	56
36	Chapter 3.2 Transformation of pharmaceuticals in the environment: Photolysis and other abiotic processes. <i>Comprehensive Analytical Chemistry</i> , 2007 , 361-385	1.9	12
35	Synthesis and structures of acyclic monoanionic tetradentate aza beta-diketiminate complexes of magnesium, zinc, and cadmium. <i>Dalton Transactions</i> , 2006 , 4814-20	4.3	17
34	Aquatic photochemistry of nitrofuran antibiotics. <i>Environmental Science & Environmental Science & Env</i>	10.3	85
33	Singlet oxygen production in the reaction of superoxide with organic peroxides. <i>Journal of Organic Chemistry</i> , 2006 , 71, 796-9	4.2	14
32	Evidence for the formation of a cis-dichlorovinyl anion upon reduction of cis-1,2-dichlorovinyl(pyridine)cobaloxime. <i>Inorganic Chemistry</i> , 2006 , 45, 2727-32	5.1	17
31	Water hardness as a photochemical parameter: tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH. <i>Environmental Science & amp; Technology</i> , 2006 , 40, 7236-41	10.3	122
30	Synthesis, structure, and unusual reactivity of beta-halovinyl cobalt porphyrin complexes. <i>Inorganic Chemistry</i> , 2006 , 45, 2288-95	5.1	10
29	Catalytic Dehalogenation of sp2 CE and CII Bonds in Fluoro- and Chloroalkenes. <i>Organometallics</i> , 2006 , 25, 4938-4940	3.8	73
28	Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions. <i>Science</i> , 2006 , 311, 1743-7	33.3	254
27	Changes in antibacterial activity of triclosan and sulfa drugs due to photochemical transformations. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 1480-6	3.8	35
26	Kinetics and mechanism of the sensitized photodegradation of lignin model compounds. <i>Photochemical and Photobiological Sciences</i> , 2005 , 4, 268-74	4.2	27
25	Reduction of trichloroethylene by outer-sphere electron-transfer agents. <i>Journal of the American Chemical Society</i> , 2005 , 127, 844-5	16.4	37
24	Aqueous reductive dechlorination of chlorinated ethylenes with tetrakis(4-carboxyphenyl)porphyrin cobalt. <i>Inorganic Chemistry</i> , 2005 , 44, 4852-61	5.1	34
23	Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: identification of an SO2 extrusion photoproduct. <i>Environmental Science & Environmental Science & Envi</i>	10.3	278
22	Environmental photodegradation of mefenamic acid. <i>Chemosphere</i> , 2005 , 58, 1339-46	8.4	77

21	Photosensitizing properties of 2,4-dichlorobenzoic acid and chlorinated biphenyl carboxylic acids, potentially key components of chromophoric dissolved organic matter. <i>Chemical Communications</i> , 2005 , 4113-5	5.8	2
20	Quantification of singlet oxygen production in the reaction of superoxide with hydrogen peroxide using a selective chemiluminescent probe. <i>Journal of the American Chemical Society</i> , 2005 , 127, 8954-5	16.4	42
19	Stable dioxetane precursors as selective trap-and-trigger chemiluminescent probes for singlet oxygen. <i>Analytical Chemistry</i> , 2005 , 77, 1200-5	7.8	40
18	Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 517-25	3.8	212
17	Preparation of 14C2-cis-1,2-dichloroethylene from 14C2-trichloroethylene using a cobalt porphyrin catalyst. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> , 2005 , 48, 353-357	1.9	2
16	2-(2?-Pyridyl)pyrroles: Part II. Spectroscopic investigation of pyridylpyrrole alcohol complexes. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 3948-3957	3.6	14
15	Pyridylpyrrolides as alternatives to cyclometalated phenylpyridine ligands: synthesis and characterization of luminescent zinc and boron pyridylpyrrolide complexes. <i>Dalton Transactions</i> , 2004 , 883-91	4.3	56
14	2-(2?-Pyridyl)pyrroles: Part I. Structure and energetics of pyridylpyrroles, their dimers, complexes and excited states. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 3938-3947	3.6	14
13	Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups. <i>Environmental Science & Environmental Science & Envir</i>	10.3	488
12	Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. <i>Aquatic Sciences</i> , 2003 , 65, 342-351	2.5	326
11	Photodegradation of pharmaceuticals in the aquatic environment: A review. <i>Aquatic Sciences</i> , 2003 , 65, 320-341	2.5	364
10	Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2003 , 158, 63-66	4.7	206
9	Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine. <i>Environmental Science & Environmental Sc</i>	10.3	219
8	One-step synthesis of 3,5-disubstituted-2-pyridylpyrroles from the condensation of 1,3-diones and 2-(aminomethyl)pyridine. <i>Organic Letters</i> , 2002 , 4, 435-7	6.2	70
7	Synthesis of (chlorovinyl)cobaloxime complexes, model complexes of proposed intermediates in the B12-catalyzed dehalogenation of chlorinated ethylenes. <i>Chemical Communications</i> , 2002 , 234-5	5.8	17
6	Fate of Benzene in a Stratified Lake Receiving Contaminated Groundwater Discharges from a Superfund Site. <i>Environmental Science & Environmental Scien</i>	10.3	18
5	Rapid Reduction of Nitric Oxide to Dinitrogen by Zirconium(II): Kinetic Studies on a Reaction Controlled by Gas Liquid Transport. <i>Journal of the American Chemical Society</i> , 1999 , 121, 8260-8269	16.4	23
4	CII and CIII Bond Activation at Ruthenium(II): The Stepwise Degradation of a Neopentyl Ligand to a Trimethylenemethane Ligand. <i>Journal of the American Chemical Society</i> , 1997 , 119, 11244-11254	16.4	57

LIST OF PUBLICATIONS

- Interconversion of a 3,3-Dimethylruthenacyclobutane and a Methyl(2-methallyl)ruthenium Complex: The First Direct Observation of Reversible .beta.-Methyl Elimination/Migratory Insertion. 16.4 33 3 Journal of the American Chemical Society, 1995, 117, 3625-3626
- Tris(pyrazolyl)hydroboratozinc hydroxide complexes as functional models for carbonic anhydrase: on the nature of the bicarbonate intermediate. Journal of the American Chemical Society, 1993, 115, 469 0.4697^{164}
- Structural and spectroscopic studies on four-, five-, and six-coordinate complexes of zinc, copper, nickel, and cobalt: Structural models for the bicarbonate intermediate of the carbonic anhydrase 58 4.2 catalytic cycle. Journal of Inorganic Biochemistry, 1993, 49, 105-121