
Kristopher McNeill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3823046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photochemical Fate of Sulfa Drugs in the Aquatic Environment:Â Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environmental Science & Technology, 2004, 38, 3933-3940.	10.0	591
2	Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic Sciences, 2003, 65, 320-341.	1.5	403
3	Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquatic Sciences, 2003, 65, 342-351.	1.5	376
4	Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties. Environmental Sciences: Processes and Impacts, 2016, 18, 1381-1399.	3.5	351
5	Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquatic Sciences, 2012, 74, 683-734.	1.5	330
6	Triplet-Sensitized Photodegradation of Sulfa Drugs Containing Six-Membered Heterocyclic Groups:Â Identification of an SO2Extrusion Photoproduct. Environmental Science & Technology, 2005, 39, 3630-3638.	10.0	325
7	Microheterogeneity of Singlet Oxygen Distributions in Irradiated Humic Acid Solutions. Science, 2006, 311, 1743-1747.	12.6	301
8	Biodegradation of synthetic polymers in soils: Tracking carbon into CO ₂ and microbial biomass. Science Advances, 2018, 4, eaas9024.	10.3	284
9	Photochemical Fate of Pharmaceuticals in the Environment:Â Cimetidine and Ranitidine. Environmental Science & Technology, 2003, 37, 3342-3350.	10.0	245
10	Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158, 63-66.	3.9	238
11	AQUEOUS PHOTOCHEMISTRY OF TRICLOSAN: FORMATION OF 2,4-DICHLOROPHENOL, 2,8-DICHLORODIBENZO-p-DIOXIN, AND OLIGOMERIZATION PRODUCTS. Environmental Toxicology and Chemistry, 2005, 24, 517.	4.3	236
12	Terephthalate as a probe for photochemically generated hydroxyl radical. Journal of Environmental Monitoring, 2010, 12, 1658.	2.1	223
13	Photooxidation-Induced Changes in Optical, Electrochemical, and Photochemical Properties of Humic Substances. Environmental Science & amp; Technology, 2014, 48, 2688-2696.	10.0	211
14	Indirect Photodegradation of Dissolved Free Amino Acids: The Contribution of Singlet Oxygen and the Differential Reactivity of DOM from Various Sources. Environmental Science & Technology, 2008, 42, 5492-5498.	10.0	201
15	Tris(pyrazolyl)hydroboratozinc hydroxide complexes as functional models for carbonic anhydrase: on the nature of the bicarbonate intermediate. Journal of the American Chemical Society, 1993, 115, 4690-4697.	13.7	200
16	Dark Formation of Hydroxyl Radical in Arctic Soil and Surface Waters. Environmental Science & Technology, 2013, 47, 12860-12867.	10.0	198
17	Assessing the Contribution of Free Hydroxyl Radical in Organic Matter-Sensitized Photohydroxylation Reactions. Environmental Science & Technology, 2011, 45, 2818-2825.	10.0	191
18	Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin. Water Research, 2013, 47, 439-448.	11.3	191

#	Article	lF	CITATIONS
19	Direct Photolysis of Human Metabolites of the Antibiotic Sulfamethoxazole: Evidence for Abiotic Back-Transformation. Environmental Science & Technology, 2013, 47, 6746-6755.	10.0	189
20	Hydroxyl Radical Formation upon Oxidation of Reduced Humic Acids by Oxygen in the Dark. Environmental Science & Technology, 2012, 46, 1590-1597.	10.0	184
21	Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environmental Sciences: Processes and Impacts, 2018, 20, 1089-1122.	3.5	180
22	Dual Roles of Dissolved Organic Matter as Sensitizer and Quencher in the Photooxidation of Tryptophan. Environmental Science & Technology, 2014, 48, 4916-4924.	10.0	160
23	Covariation and Photoinactivation of Traditional and Novel Indicator Organisms and Human Viruses at a Sewage-Impacted Marine Beach. Environmental Science & Technology, 2009, 43, 8046-8052.	10.0	153
24	Water Hardness as a Photochemical Parameter:  Tetracycline Photolysis as a Function of Calcium Concentration, Magnesium Concentration, and pH. Environmental Science & Technology, 2006, 40, 7236-7241.	10.0	144
25	The Florence Statement on Triclosan and Triclocarban. Environmental Health Perspectives, 2017, 125, 064501.	6.0	144
26	Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: effect of temperature, pH, and salt content. Environmental Sciences: Processes and Impacts, 2017, 19, 507-516.	3.5	141
27	Singlet Oxygen in the Coupled Photochemical and Biochemical Oxidation of Dissolved Organic Matter. Environmental Science & Technology, 2010, 44, 3683-3689.	10.0	134
28	Quenching of Excited Triplet States by Dissolved Natural Organic Matter. Environmental Science & Technology, 2013, 47, 12802-12810.	10.0	132
29	Dioxin Photoproducts of Triclosan and Its Chlorinated Derivatives in Sediment Cores. Environmental Science & Technology, 2010, 44, 4545-4551.	10.0	130
30	Indirect Photolysis of Perfluorochemicals: Hydroxyl Radical-Initiated Oxidation of <i>N</i> -Ethyl Perfluorooctane Sulfonamido Acetate (<i>N</i> -EtFOSAA) and Other Perfluoroalkanesulfonamides. Environmental Science & Technology, 2009, 43, 3662-3668.	10.0	128
31	Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzoâ€ <i>P</i> â€dioxins. Environmental Toxicology and Chemistry, 2009, 28, 2555-2563.	4.3	120
32	Singlet Oxygen Quantum Yields in Environmental Waters. Chemical Reviews, 2021, 121, 4100-4146.	47.7	118
33	Photosensitized Amino Acid Degradation in the Presence of Riboflavin and Its Derivatives. Environmental Science & Technology, 2011, 45, 5230-5237.	10.0	108
34	Spatial and Temporal Distribution of Singlet Oxygen in Lake Superior. Environmental Science & Technology, 2012, 46, 7222-7229.	10.0	103
35	Aquatic Photochemistry of Nitrofuran Antibiotics. Environmental Science & Technology, 2006, 40, 5422-5427.	10.0	102
36	Quantifying Interactions between Singlet Oxygen and Aquatic Fulvic Acids. Environmental Science & Technology, 2009, 43, 718-723.	10.0	102

#	Article	IF	CITATIONS
37	Sustainable Polyester Elastomers from Lactones: Synthesis, Properties, and Enzymatic Hydrolyzability. Journal of the American Chemical Society, 2018, 140, 963-973.	13.7	102
38	Habitat structure and the evolution of diffusible siderophores in bacteria. Ecology Letters, 2014, 17, 1536-1544.	6.4	98
39	Microheterogeneous Concentrations of Singlet Oxygen in Natural Organic Matter Isolate Solutions. Environmental Science & Technology, 2008, 42, 9184-9190.	10.0	96
40	Association with Natural Organic Matter Enhances the Sunlight-Mediated Inactivation of MS2 Coliphage by Singlet Oxygen. Environmental Science & Technology, 2007, 41, 4626-4632.	10.0	95
41	Low Molecular Weight Components in an Aquatic Humic Substance As Characterized by Membrane Dialysis and Orbitrap Mass Spectrometry. Environmental Science & Technology, 2012, 46, 9350-9359.	10.0	93
42	Sunlight Inactivation of Human Viruses and Bacteriophages in Coastal Waters Containing Natural Photosensitizers. Environmental Science & Technology, 2013, 47, 1870-1878.	10.0	93
43	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical and Photobiological Sciences, 2021, 20, 1-67.	2.9	93
44	Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters. Environmental Sciences: Processes and Impacts, 2014, 16, 807-822.	3.5	92
45	Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Scientific Reports, 2016, 6, 36246.	3.3	90
46	Quantification of Triclosan, Chlorinated Triclosan Derivatives, and their Dioxin Photoproducts in Lacustrine Sediment Cores. Environmental Science & Technology, 2013, 47, 1833-1843.	10.0	89
47	Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility. Environmental Science & Technology, 2017, 51, 7476-7485.	10.0	89
48	Dos and Do Nots When Assessing the Biodegradation of Plastics. Environmental Science & Technology, 2019, 53, 9967-9969.	10.0	87
49	Environmental photodegradation of mefenamic acid. Chemosphere, 2005, 58, 1339-1346.	8.2	82
50	Singlet Oxygen Phosphorescence as a Probe for Triplet-State Dissolved Organic Matter Reactivity. Environmental Science & Technology, 2018, 52, 9170-9178.	10.0	82
51	One-Step Synthesis of 3,5-Disubstituted-2-pyridylpyrroles from the Condensation of 1,3-Diones and 2-(Aminomethyl)pyridine. Organic Letters, 2002, 4, 435-437.	4.6	80
52	Catalytic Dehalogenation of sp2 Câ^'F and Câ^'Cl Bonds in Fluoro- and Chloroalkenes. Organometallics, 2006, 25, 4938-4940.	2.3	74
53	Reductive Dechlorination of TCE by Chemical Model Systems in Comparison to Dehalogenating Bacteria: Insights from Dual Element Isotope Analysis (¹³ C/ ¹² C,) Tj ETQq1 1 0.7843	14 rg8.70/Ov	verback 10 Tf
54	Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter. Environmental Science & Technology, 2016, 50, 6363-6373.	10.0	73

#	Article	IF	CITATIONS
55	Structural and spectroscopic studies on four-, five-, and six-coordinate complexes of zinc, copper, nickel, and cobalt: Structural models for the bicarbonate intermediate of the carbonic anhydrase catalytic cycle. Journal of Inorganic Biochemistry, 1993, 49, 105-121.	3.5	69
56	Câ^'C and Câ^'H Bond Activation at Ruthenium(II):  The Stepwise Degradation of a Neopentyl Ligand to a Trimethylenemethane Ligand. Journal of the American Chemical Society, 1997, 119, 11244-11254.	13.7	67
57	Unexpected Products and Reaction Mechanisms of the Aqueous Chlorination of Cimetidine. Environmental Science & Technology, 2007, 41, 6228-6233.	10.0	65
58	Experimental and Theoretical Insights into the Involvement of Radicals in Triclosan Phototransformation. Environmental Science & Technology, 2013, 47, 6756-6763.	10.0	64
59	Photochemical Production of Singlet Oxygen from Particulate Organic Matter. Environmental Science & Technology, 2015, 49, 3514-3522.	10.0	63
60	Analysis of Medium-Chain and Long-Chain Chlorinated Paraffins: The Urgent Need for More Specific Analytical Standards. Environmental Science and Technology Letters, 2018, 5, 708-717.	8.7	61
61	The Case Against Charge Transfer Interactions in Dissolved Organic Matter Photophysics. Environmental Science & Technology, 2018, 52, 406-414.	10.0	60
62	Pyridylpyrrolides as alternatives to cyclometalated phenylpyridine ligands: synthesis and characterization of luminescent zinc and boron pyridylpyrrolide complexes. Dalton Transactions, 2004, , 883-891.	3.3	59
63	Halogenation of Bisphenol-A, Triclosan, and Phenols in Chlorinated Waters Containing Iodide. Environmental Science & Technology, 2013, 47, 6764-6772.	10.0	59
64	Photochemical Formation of Halogenated Dioxins from Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) and Chlorinated Derivatives (OH-PBCDEs). Environmental Science & Technology, 2009, 43, 4405-4411.	10.0	56
65	Photochemical Formation of Brominated Dioxins and Other Products of Concern from Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs). Environmental Science & Technology, 2012, 46, 8174-8180.	10.0	56
66	Aqueous Oxidation of Sulfonamide Antibiotics: Aromatic Nucleophilic Substitution of an Aniline Radical Cation. Chemistry - A European Journal, 2013, 19, 11216-11223.	3.3	56
67	Quantification of Synthetic Polyesters from Biodegradable Mulch Films in Soils. Environmental Science & Technology, 2020, 54, 266-275.	10.0	56
68	Dechlorination of chloroethylenes by cob(i)alamin and cobalamin model complexes. Dalton Transactions, 2008, , 4191.	3.3	55
69	Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter. Environmental Science & Technology, 2015, 49, 5511-5519.	10.0	51
70	Quantification of Singlet Oxygen Production in the Reaction of Superoxide with Hydrogen Peroxide Using a Selective Chemiluminescent Probe. Journal of the American Chemical Society, 2005, 127, 8954-8955.	13.7	50
71	Deconvolution of Mass Spectral Interferences of Chlorinated Alkanes and Their Thermal Degradation Products: Chlorinated Alkenes. Analytical Chemistry, 2017, 89, 5923-5931.	6.5	49
72	Controlling Factors in the Rates of Oxidation of Anilines and Phenols by Triplet Methylene Blue in Aqueous Solution. Journal of Physical Chemistry A, 2015, 119, 3233-3243.	2.5	48

#	Article	IF	CITATIONS
73	Stable Dioxetane Precursors as Selective Trap-and-Trigger Chemiluminescent Probes for Singlet Oxygen. Analytical Chemistry, 2005, 77, 1200-1205.	6.5	47
74	On the Use of Hydroxyl Radical Kinetics to Assess the Number-Average Molecular Weight of Dissolved Organic Matter. Environmental Science & Technology, 2014, 48, 11794-11802.	10.0	47
75	Complete Hydrodehalogenation of Polyfluorinated and Other Polyhalogenated Benzenes under Mild Catalytic Conditions. Environmental Science & Technology, 2013, 47, 6545-6553.	10.0	45
76	Photochemical Transformation of Poly(butylene adipate- <i>co</i> -terephthalate) and Its Effects on Enzymatic Hydrolyzability. Environmental Science & amp; Technology, 2019, 53, 2472-2481.	10.0	45
77	Triplet-State Dissolved Organic Matter Quantum Yields and Lifetimes from Direct Observation of Aromatic Amine Oxidation. Environmental Science & amp; Technology, 2017, 51, 13151-13160.	10.0	44
78	Interconversion of a 3,3-Dimethylruthenacyclobutane and a Methyl(2-methallyl)ruthenium Complex: The First Direct Observation of Reversible .betaMethyl Elimination/Migratory Insertion. Journal of the American Chemical Society, 1995, 117, 3625-3626.	13.7	43
79	Hydrodefluorination and Hydrogenation of Fluorobenzene under Mild Aqueous Conditions. Environmental Science & Technology, 2012, 46, 10199-10205.	10.0	43
80	Updated and validated solar irradiance reference spectra for estimating environmental photodegradation rates. Environmental Sciences: Processes and Impacts, 2019, 21, 427-437.	3.5	43
81	Environmental Photochemistry of Amino Acids, Peptides and Proteins. Chimia, 2014, 68, 812.	0.6	42
82	Dealing with strong mass interferences of chlorinated paraffins and their transformation products: An analytical guide. TrAC - Trends in Analytical Chemistry, 2018, 106, 116-124.	11.4	42
83	Reactivity Differences of Combined and Free Amino Acids: Quantifying the Relationship between Three-Dimensional Protein Structure and Singlet Oxygen Reaction Rates. Environmental Science & Technology, 2013, 47, 14215-14223.	10.0	41
84	Sorbic Acid as a Triplet Probe: Triplet Energy and Reactivity with Triplet-State Dissolved Organic Matter via ¹ O ₂ Phosphorescence. Environmental Science & Technology, 2019, 53, 8078-8086.	10.0	41
85	Assessing the environmental transformation of nanoplastic through 13C-labelled polymers. Nature Nanotechnology, 2019, 14, 301-303.	31.5	41
86	Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. Chemosphere, 2011, 84, 1238-1243.	8.2	40
87	Aqueous Reductive Dechlorination of Chlorinated Ethylenes with Tetrakis(4-carboxyphenyl)porphyrin Cobalt. Inorganic Chemistry, 2005, 44, 4852-4861.	4.0	39
88	Electronic structures of [n]-cyclacenes (n = 6–12) and short, hydrogen-capped, carbon nanotubes. Faraday Discussions, 0, 145, 507-521.	3.2	39
89	Reduction of Trichloroethylene by Outer-Sphere Electron-Transfer Agents. Journal of the American Chemical Society, 2005, 127, 844-845.	13.7	38
90	CHANGES IN ANTIBACTERIAL ACTIVITY OF TRICLOSAN AND SULFA DRUGS DUE TO PHOTOCHEMICAL TRANSFORMATIONS. Environmental Toxicology and Chemistry, 2006, 25, 1480.	4.3	38

#	Article	IF	CITATIONS
91	Chlorinated Ethene Reactivity with Vitamin B ₁₂ Is Governed by Cobalamin Chloroethylcarbanions as Crossroads of Competing Pathways. ACS Catalysis, 2018, 8, 3054-3066.	11.2	38
92	Dehalogenation of Aromatics by Nucleophilic Aromatic Substitution. Environmental Science & Technology, 2014, 48, 10904-10911.	10.0	37
93	Disentangling the Interactions Between Photochemical and Bacterial Degradation of Dissolved Organic Matter: Amino Acids Play a Central Role. Microbial Ecology, 2015, 69, 554-566.	2.8	37
94	Kinetics and mechanism of the sensitized photodegradation of lignin model compounds. Photochemical and Photobiological Sciences, 2005, 4, 268.	2.9	36
95	Reactive Oxygen Species Production from Secondary Organic Aerosols: The Importance of Singlet Oxygen. Environmental Science & Technology, 2019, 53, 8553-8562.	10.0	36
96	Photochemical Production of Sulfate and Methanesulfonic Acid from Dissolved Organic Sulfur. Environmental Science & Technology, 2019, 53, 13191-13200.	10.0	36
97	High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring Cohydrolysis of a Polyester-Embedded Fluorogenic Probe. Environmental Science & Technology, 2017, 51, 4358-4367.	10.0	35
98	Phosphinorhodium-Catalyzed Dehalogenation of Chlorinated and Fluorinated Ethylenes: Distinct Mechanisms with Triethylsilane and Dihydrogen. Organometallics, 2009, 28, 5982-5991.	2.3	34
99	Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics. Environmental Science & Technology, 2016, 50, 197-206.	10.0	34
100	Thiouridine residues in tRNAs are responsible for a synergistic effect of UVA and UVB light in photoinactivation of <i>Escherichia coli</i> . Environmental Microbiology, 2017, 19, 434-442.	3.8	33
101	Environmental Photochemistry of Tylosin:  Efficient, Reversible Photoisomerization to a Less-Active Isomer, Followed by Photolysis. Journal of Agricultural and Food Chemistry, 2007, 55, 7062-7068.	5.2	32
102	Magnitude and Mechanism of Siderophore-Mediated Competition at Low Iron Solubility in the Pseudomonas aeruginosa Pyochelin System. Frontiers in Microbiology, 2017, 8, 1964.	3.5	32
103	Dissolved Organic Matter Singlet Oxygen Quantum Yields: Evaluation Using Time-Resolved Singlet Oxygen Phosphorescence. Environmental Science & Technology, 2020, 54, 3316-3324.	10.0	32
104	Reductive Outer-Sphere Single Electron Transfer Is an Exception Rather than the Rule in Natural and Engineered Chlorinated Ethene Dehalogenation. Environmental Science & Technology, 2017, 51, 9663-9673.	10.0	30
105	Transformation of chlorinated paraffins to olefins during metal work and thermal exposure – Deconvolution of mass spectra and kinetics. Chemosphere, 2018, 194, 803-811.	8.2	30
106	Polyol Structure Influences Enzymatic Hydrolysis of Bioâ€Based 2,5â€Furandicarboxylic Acid (FDCA) Polyesters. Biotechnology Journal, 2017, 12, 1600741.	3.5	29
107	Non-Singlet Oxygen Kinetic Solvent Isotope Effects in Aquatic Photochemistry. Environmental Science & Technology, 2018, 52, 9908-9916.	10.0	29
108	Photodegradation of Fludioxonil and Other Pyrroles: The Importance of Indirect Photodegradation for Understanding Environmental Fate and Photoproduct Formation. Environmental Science & Technology, 2019, 53, 11240-11250.	10.0	29

#	Article	IF	CITATIONS
109	Thermochemical Factors Affecting the Dehalogenation of Aromatics. Environmental Science & Technology, 2013, 47, 14194-14203.	10.0	28
110	Isotope Fractionation Associated with the Direct Photolysis of 4-Chloroaniline. Environmental Science & Technology, 2015, 49, 4263-4273.	10.0	28
111	Isotope Fractionation Associated with the Photochemical Dechlorination of Chloroanilines. Environmental Science & Technology, 2015, 49, 9797-9806.	10.0	28
112	Aquatic photochemical kinetics of benzotriazole and structurally related compounds. Environmental Sciences: Processes and Impacts, 2015, 17, 939-946.	3.5	27
113	Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals. Atmospheric Chemistry and Physics, 2019, 19, 12397-12412.	4.9	27
114	Characterization of Coâ^'C Bonding in Dichlorovinylcobaloxime Complexes. Inorganic Chemistry, 2007, 46, 1645-1654.	4.0	25
115	Rapid Reduction of Nitric Oxide to Dinitrogen by Zirconium(II):Â Kinetic Studies on a Reaction Controlled by Gasâ^'Liquid Transport. Journal of the American Chemical Society, 1999, 121, 8260-8269.	13.7	24
116	Photolysis of Chlortetracycline on a Clay Surface. Journal of Agricultural and Food Chemistry, 2009, 57, 6932-6937.	5.2	23
117	Environmental photochemistry of fenamate NSAIDs and their radical intermediates. Environmental Sciences: Processes and Impacts, 2017, 19, 656-665.	3.5	23
118	Chapter 3.2 Transformation of pharmaceuticals in the environment: Photolysis and other abiotic processes. Comprehensive Analytical Chemistry, 2007, , 361-385.	1.3	22
119	Photooxidation of the Antimicrobial, Nonribosomal Peptide Bacitracin A by Singlet Oxygen under Environmentally Relevant Conditions. Environmental Science & Technology, 2016, 50, 8586-8595.	10.0	22
120	Environmental Photochemistry of Altrenogest: Photoisomerization to a Bioactive Product with Increased Environmental Persistence via Reversible Photohydration. Environmental Science & Technology, 2016, 50, 7480-7488.	10.0	21
121	Aquatic indirect photochemical transformations of natural peptidic thiols: impact of thiol properties, solution pH, solution salinity and metal ions. Environmental Sciences: Processes and Impacts, 2017, 19, 1518-1527.	3.5	21
122	Fate of Benzene in a Stratified Lake Receiving Contaminated Groundwater Discharges from a Superfund Site. Environmental Science & Technology, 2000, 34, 4354-4362.	10.0	20
123	Sorbic Acid as a Triplet Probe: Reactivity of Oxidizing Triplets in Dissolved Organic Matter by Direct Observation of Aromatic Amine Oxidation. Environmental Science & Technology, 2019, 53, 8087-8096.	10.0	19
124	Synthesis of (chlorovinyl)cobaloxime complexes, model complexes of proposed intermediates in the B12-catalyzed dehalogenation of chlorinated ethylenesElectronic supplementary information (ESI) available: full experimental details and characterization of complexes 1–3, and X-ray diffraction data. See http://www.rsc.org/suppdata/cc/b1/b109001a/. Chemical Communications, 2002, , 234-235.	4.1	18
125	Synthesis and structures of acyclic monoanionic tetradentate aza β-diketiminate complexes of magnesium, zinc, and cadmium. Dalton Transactions, 2006, , 4814-4820.	3.3	18
126	Synthesis and Characterization of Pentaphosphino Zero-Valent Iron Complexes and Their Corresponding Iron(II)-Chloride and -Hydride Complexes. Inorganic Chemistry, 2010, 49, 3942-3949.	4.0	18

#	Article	IF	CITATIONS
127	Linking Triclosan's Structural Features to Its Environmental Fate and Photoproducts. Environmental Science & Technology, 2020, 54, 14432-14441.	10.0	18
128	Evidence for the Formation of acis-Dichlorovinyl Anion upon Reduction of cis-1,2-Dichlorovinyl(pyridine)cobaloxime. Inorganic Chemistry, 2006, 45, 2727-2732.	4.0	17
129	2-(2′-Pyridyl)pyrroles: Part I. Structure and energetics of pyridylpyrroles, their dimers, complexes and excited states. Physical Chemistry Chemical Physics, 2004, 6, 3938-3947.	2.8	16
130	Environmental Photoinactivation of Extracellular Phosphatases and the Effects of Dissolved Organic Matter. Environmental Science & Technology, 2015, 49, 889-896.	10.0	16
131	Isotope Fractionation Associated with the Indirect Photolysis of Substituted Anilines in Aqueous Solution. Environmental Science & Technology, 2015, 49, 12766-12773.	10.0	16
132	Singlet Oxygen Photooxidation of Peptidic Oxazoles and Thiazoles. Journal of Organic Chemistry, 2019, 84, 2439-2447.	3.2	16
133	2-(2′-Pyridyl)pyrroles: Part II. Spectroscopic investigation of pyridylpyrrole alcohol complexes. Physical Chemistry Chemical Physics, 2004, 6, 3948-3957.	2.8	15
134	Singlet Oxygen Production in the Reaction of Superoxide with Organic Peroxides. Journal of Organic Chemistry, 2006, 71, 796-799.	3.2	15
135	Investigating the Impact of Adding an Environmental Focus to a Developmental Chemistry Course. Journal of Chemical Education, 2010, 87, 216-220.	2.3	15
136	Assessing the Indirect Photochemical Transformation of Dissolved Combined Amino Acids through the Use of Systematically Designed Histidine-Containing Oligopeptides. Environmental Science & Technology, 2015, 49, 12798-12807.	10.0	15
137	Reconciling Disparate Models of the Involvement of Vinyl Radicals in Cobalamin-Mediated Dechlorination Reactions. Environmental Science & amp; Technology, 2009, 43, 8961-8967.	10.0	14
138	Quantification of Hydroxylated Polybrominated Diphenyl Ethers (OH-BDEs), Triclosan, and Related Compounds in Freshwater and Coastal Systems. PLoS ONE, 2015, 10, e0138805.	2.5	14
139	UV/Vis+ photochemistry database: Structure, content and applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107056.	2.3	14
140	Reprint of: Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. Chemosphere, 2011, 85, 284-289.	8.2	13
141	Furan Carboxamides as Model Compounds To Study the Competition between Two Modes of Indirect Photochemistry. Environmental Science & Technology, 2019, 53, 9594-9603.	10.0	13
142	Synthesis and Reactivity of an Isolable Cobalt(I) Complex Containing a β-Diketiminate-Based Acyclic Tetradentate Ligand. Inorganic Chemistry, 2012, 51, 2079-2085.	4.0	12
143	Differences in photochemistry between seawater and freshwater for two natural organic matter samples. Environmental Sciences: Processes and Impacts, 2019, 21, 28-39.	3.5	12
144	Distribution of intermediate host snails of schistosomiasis and fascioliasis in relation to environmental factors during the dry season in the Tchologo region, CÑte d'Ivoire. Advances in Water Resources, 2017, 108, 386-396.	3.8	11

#	Article	IF	CITATIONS
145	Fluorescent Molecular Probes for Detection of One-Electron Oxidants Photochemically Generated by Dissolved Organic Matter. Environmental Science & Technology, 2017, 51, 9033-9041.	10.0	11
146	Substituent Effects on the Direct Photolysis of Benzotrifluoride Derivatives. Environmental Science & Technology, 2020, 54, 11109-11117.	10.0	11
147	Photochemical fate of medetomidine in coastal and marine environments. Water Research, 2021, 191, 116791.	11.3	11
148	Synthesis, Structure, and Unusual Reactivity of β-Halovinyl Cobalt Porphyrin Complexes. Inorganic Chemistry, 2006, 45, 2288-2295.	4.0	10
149	Development of <i>N</i> -Cyclopropylanilines to Probe the Oxidative Properties of Triplet-State Photosensitizers. Environmental Science & Technology, 2019, 53, 4813-4822.	10.0	10
150	Vicinal dichlorine elimination at dichloroalkenes promoted by a well-defined iron(0) complex. Dalton Transactions, 2011, 40, 1646.	3.3	9
151	Metal ion size and coordination mode in complexes of a β-diketiminate ligand with pendant quinoline arms. Inorganica Chimica Acta, 2011, 369, 173-179.	2.4	9
152	Mechanistic Insights into Dissolved Organic Sulfur Photomineralization through the Study of Cysteine Sulfinic Acid. Environmental Science & amp; Technology, 2020, 54, 13066-13076.	10.0	8
153	Intramolecular [2 + 2] Photocycloaddition of Altrenogest: Confirmation of Product Structure, Theoretical Mechanistic Insight, and Bioactivity Assessment. Journal of Organic Chemistry, 2019, 84, 11366-11371.	3.2	6
154	Factors affecting the mixed-layer concentrations of singlet oxygen in sunlit lakes. Environmental Sciences: Processes and Impacts, 2021, 23, 1130-1145.	3.5	5
155	Dechlorination of chlorinated ethylenes by a photochemically generated iron(0) complex. Dalton Transactions, 2013, 42, 10121.	3.3	4
156	A streamlined workflow to study direct photodegradation kinetic and transformation products for persistence assessment of a fragrance ingredient in natural waters. Environmental Sciences: Processes and Impacts, 2019, 21, 1713-1721.	3.5	4
157	UVB-irradiated Laboratory-generated Secondary Organic Aerosol Extracts Have Increased Cloud Condensation Nuclei Abilities: Comparison with Dissolved Organic Matter and Implications for the Photomineralization Mechanism. Chimia, 2020, 74, 142.	0.6	4
158	Kinetics and Pathways of the Aqueous Photolysis of Pharmaceutical Pollutants: A Versatile Laboratory or Remote Learning Investigation. Journal of Chemical Education, 2021, 98, 2411-2418.	2.3	4
159	The Overlooked Photochemistry of Iodine in Aqueous Suspensions of Fullerene Derivatives. ACS Nano, 2022, 16, 8309-8317.	14.6	4
160	Photosensitizing properties of 2,4-dichlorobenzoic acid and chlorinated biphenyl carboxylic acids, potentially key components of chromophoric dissolved organic matter. Chemical Communications, 2005, , 4113.	4.1	3
161	Response to Comment on "Indirect Photolysis of Perfluorochemicals: Hydroxyl Radical-Initiated Oxidation of <i>N</i> -Ethyl Perfluorooctane Sulfonamido Acetate (<i>N</i> -EtFOSAA) and Other Perfluoroalkanesulfonamides― Environmental Science & Technology, 2009, 43, 7997-7997.	10.0	3
162	Triclosan, chlorinated triclosan derivatives, and hydroxylated polybrominated diphenyl ethers (OH-BDEs) in wastewater effluents. Environmental Science: Water Research and Technology, 2015, 1, 316-325.	2.4	3

#	Article	IF	CITATIONS
163	Site-Specific Mineralization of a Polyester Hydrolysis Product in Natural Soil. ACS Sustainable Chemistry and Engineering, 2022, 10, 1373-1378.	6.7	3
164	Preparation of14C2-cis-1,2-dichloroethylene from14C2-trichloroethylene using a cobalt porphyrin catalyst. Journal of Labelled Compounds and Radiopharmaceuticals, 2005, 48, 353-357.	1.0	2
165	Offering authors a choice: introduction of optional double-blind peer review. Environmental Science: Nano, 2020, 7, 11-12.	4.3	2
166	Themed issue on aquatic photochemistry. Environmental Sciences: Processes and Impacts, 2014, 16, 626.	3.5	1
167	2019 Best Papers published in the Environmental Science journals of the Royal Society of Chemistry. Environmental Sciences: Processes and Impacts, 2020, 22, 860-862.	3.5	1
168	A Tribute to René P. Schwarzenbach. Environmental Science & Technology, 2013, 47, 6725-6727.	10.0	0
169	Elevator pitch. Environmental Sciences: Processes and Impacts, 2016, 18, 304-305.	3.5	0
170	Best Papers from 2018 in the <i>Environmental Science</i> family of journals: great science with a global reach. Environmental Sciences: Processes and Impacts, 2019, 21, 603-604.	3.5	0
171	Best Papers from 2018 in the Environmental Science family of journals: great science with a global reach. Environmental Science: Water Research and Technology, 2019, 5, 629-630.	2.4	0
172	Best Papers from 2018 in the Environmental Science family of journals: great science with a global reach. Environmental Science: Nano, 2019, 6, 1004-1005.	4.3	0
173	Offering authors a choice: introduction of optional double-blind peer review. Environmental Sciences: Processes and Impacts, 2020, 22, 10-11.	3.5	0
174	Offering authors a choice: introduction of optional double-blind peer review. Environmental Science: Water Research and Technology, 2020, 6, 10-11.	2.4	0
175	2019 Best Papers published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Nano, 2020, 7, 1630-1632.	4.3	0
176	2019 Best Papers published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Water Research and Technology, 2020, 6, 1210-1212.	2.4	0
177	Best Papers from 2020 published in the Environmental Science journals of the Royal Society of Chemistry. Environmental Science: Nano, 2021, 8, 2411-2413.	4.3	0
178	Best papers from 2020 published in the Environmental Science journals of the Royal Society of Chemistry. Environmental Sciences: Processes and Impacts, 2021, 23, 1252-1254.	3.5	0
179	Best Papers from 2020 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Water Research and Technology, 2021, 7, 1542-1544.	2.4	0
180	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science Atmospheres, 0, , .	2.4	0

#	Article	IF	CITATIONS
181	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Nano, 0, , .	4.3	0
182	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Water Research and Technology, 0, , .	2.4	0
183	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Sciences: Processes and Impacts, 2022, 24, 848-850.	3.5	0