
Edith L Taleisnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3822827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive Oxygen Species in the Elongation Zone of Maize Leaves Are Necessary for Leaf Extension. Plant Physiology, 2002, 129, 1627-1632.	2.3	228
2	Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regulation, 2003, 41, 149-158.	1.8	181
3	Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone. Plant Physiology, 2015, 169, 1382-1396.	2.3	178
4	Oxidative stress indicators as selection tools for salt tolerance in Chloris gayana. Plant Breeding, 2000, 119, 341-345.	1.0	75
5	Leaf expansion in grasses under salt stress. Journal of Plant Physiology, 2009, 166, 1123-1140.	1.6	58
6	Water Retention Capacity in Root Segments Differing in the Degree of Exodermis Development. Annals of Botany, 1999, 83, 19-27.	1.4	57
7	Salt Clands in the Poaceae Family and Their Relationship to Salinity Tolerance. Botanical Review, The, 2015, 81, 162-178.	1.7	53
8	lon balance in tomato cultivars differing in salt tolerance. I. Sodium and potassium accumulation and fluxes under moderate salinity. Physiologia Plantarum, 1994, 92, 528-534.	2.6	51
9	Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity. Journal of Experimental Botany, 2004, 55, 1383-1390.	2.4	49
10	Effects of salinity on germination and seedling growth of Prosopis flexuosa (D.C.). Forest Ecology and Management, 1994, 63, 347-357.	1.4	46
11	Salinity-induced decrease in NADPH oxidase activity in the maize leaf blade elongation zone. Journal of Plant Physiology, 2007, 164, 223-230.	1.6	40
12	Reductions in Maize Root-tip Elongation by Salt and Osmotic Stress do not Correlate with Apoplastic O2•â^ Levels. Annals of Botany, 2008, 102, 551-559.	1.4	38
13	Why are Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone. Journal of Experimental Botany, 2006, 57, 3945-3952.	2.4	36
14	Changes in water relation parameters under osmotic and salt stresses in maize and sorghum. Physiologia Plantarum, 1993, 89, 381-387.	2.6	33
15	Carbon Metabolism Alterations in Sunflower Plants Infected with the <i>Sunflower Chlorotic Mottle Virus</i> . Journal of Phytopathology, 2003, 151, 267-273.	0.5	33
16	Sunflower Chlorotic Mottle Virus in Compatible Interactions with Sunflower: ROS Generation and Antioxidant Response. European Journal of Plant Pathology, 2005, 113, 223-232.	0.8	30
17	Salinity effects on growth and carbon balance in Lycopersicon esculentum and L. pennellii. Physiologia Plantarum, 1987, 71, 213-218.	2.6	29
18	Salt Glands in Pappophorum (Poaceae). Annals of Botany, 1988, 62, 383-388.	1.4	27

Edith L Taleisnik

#	Article	IF	CITATIONS
19	Are Sunflower chlorotic mottle virus infection symptoms modulated by early increases in leaf sugar concentration?. Journal of Plant Physiology, 2010, 167, 1137-1144.	1.6	27
20	Tomato root peroxidase isoenzymes: kinetic studies of the coniferyl alcohol peroxidase activity, immunological properties and role in response to salt stress. Journal of Plant Physiology, 2001, 158, 1007-1013.	1.6	24
21	Changes in water relation parameters under osmotic and salt stresses in maize and sorghum. Physiologia Plantarum, 1993, 89, 381-387.	2.6	23
22	Tipburn in salt-affected lettuce (Lactuca sativa L.) plants results from local oxidative stress. Journal of Plant Physiology, 2012, 169, 285-293.	1.6	18
23	Determination of Reactive Oxygen Species in Salt-Stressed Plant Tissues. Methods in Molecular Biology, 2012, 913, 225-236.	0.4	17
24	Elongation growth in leaf blades ofChloris gayana under saline conditions. Journal of Plant Physiology, 2003, 160, 517-522.	1.6	14
25	Early responses to Fe-deficiency distinguish Sorghum bicolor genotypes with contrasting alkalinity tolerance. Environmental and Experimental Botany, 2018, 155, 165-176.	2.0	11
26	Genetic variability for responses to short―and longâ€ŧerm salt stress in vegetative sunflower plants. Journal of Plant Nutrition and Soil Science, 2012, 175, 882-890.	1.1	10
27	Sodium Accumulation in Pappophorum I. Uptake, Transport and Recirculation. Annals of Botany, 1989, 63, 221-228.	1.4	8
28	Differential response of Trichloris ecotypes from different habitats to drought and salt stress. Theoretical and Experimental Plant Physiology, 2020, 32, 213-229.	1.1	8
29	Field hydroponics assessment of salt tolerance in Cenchrus ciliaris (L.): growth, yield, and maternal effect. Crop and Pasture Science, 2013, 64, 631.	0.7	6
30	Effect of watertable depth and salinity on growth dynamics of Rhodes grass (Chloris gayana). Crop and Pasture Science, 2016, 67, 881.	0.7	6
31	Tissue Printing for Peroxidases Associated with Lignification. Biotechnic and Histochemistry, 1996, 71, 258-262.	0.7	4
32	Salt tolerance in Argentine wheatgrass is related to shoot sodium exclusion. Crop Science, 2020, 60, 2437-2451.	0.8	2
33	Plant Tolerance Mechanisms to Soil Salinity Contribute to the Expansion of Agriculture and Livestock Production in Argentina. , 2021, , 381-397.		2
34	Effects of Amiloride on Sodium Accumulation in Intact Lycopersicon esculentum Plants. Journal of Plant Physiology, 1991, 138, 634-639.	1.6	1
35	Soil Salinization and Sodification as Conditioners of Vegetation and Crops: Physiological Aspects of Plant Response to These Conditions. Springer Earth System Sciences, 2021, , 43-54.	0.1	1
36	Tilting the scale towards Plant Science…in Argentina. Theoretical and Experimental Plant Physiology, 2015, 27, 1-5.	1.1	0