Sanjeev Mukerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3822798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a Robust and Durable FeN ₄ C _{<i>x</i>} Catalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand. ACS Catalysis, 2022, 12, 7541-7549.	5.5	30
2	Engendering Unprecedented Activation of Oxygen Evolution via Rational Pinning of Ni Oxidation State in Prototypical Perovskite: Close Juxtaposition of Synthetic Approach and Theoretical Conception. ACS Catalysis, 2021, 11, 985-997.	5.5	9
3	Ultralow platinum loading proton exchange membrane fuel cells: Performance losses and solutions. Journal of Power Sources, 2021, 490, 229515.	4.0	43
4	Compressive Strain Reduces the Hydrogen Evolution and Oxidation Reaction Activity of Platinum in Alkaline Solution. ACS Catalysis, 2021, 11, 8165-8173.	5.5	37
5	Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nature Materials, 2021, 20, 1385-1391.	13.3	359
6	Functionalized Embedded Monometallic Nickel Catalysts for Enhanced Hydrogen Evolution: Performance and Stability. Journal of the Electrochemical Society, 2021, 168, 084501.	1.3	9
7	<i>Operando</i> X-ray absorption spectroscopy of a Pd/γ-NiOOH 2 nm cubes hydrogen oxidation catalyst in an alkaline membrane fuel cell. Catalysis Science and Technology, 2021, 11, 1337-1344.	2.1	4
8	Understanding the ORR Electrocatalysis on Co–Mn Oxides. Journal of Physical Chemistry C, 2021, 125, 25470-25477.	1.5	11
9	Hydrogen at Scale Using Low-Temperature Anion Exchange Membrane Electrolyzers. Electrochemical Society Interface, 2021, 30, 73-77.	0.3	3
10	Evolution Pathway from Iron Compounds to Fe ₁ (II)–N ₄ Sites through Gas-Phase Iron during Pyrolysis. Journal of the American Chemical Society, 2020, 142, 1417-1423.	6.6	185
11	Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy and Environmental Science, 2020, 13, 3064-3074.	15.6	80
12	Atomically Dispersed MnN ₄ Catalysts <i>via</i> Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS Catalysis, 2020, 10, 10523-10534.	5.5	123
13	In Situ Identification of Non-Specific Adsorption of Alkali Metal Cations on Pt Surfaces and Their Catalytic Roles in Alkaline Solutions. ACS Catalysis, 2020, 10, 11099-11109.	5.5	27
14	Physical vapor deposition process for engineering Pt based oxygen reduction reaction catalysts on NbOx templated carbon support. Journal of Power Sources, 2020, 451, 227709.	4.0	22
15	Interfacial Kinetics of HOR/MOR at the AEM/Pt Microelectrode Interface: Investigation of the Influence of CO32â^' on the Reaction Kinetics and the Mass Transport through Membrane. Journal of the Electrochemical Society, 2019, 166, F889-F896.	1.3	3
16	Insight into hydrogen production through molecular simulation of an electrode-ionomer electrolyte system. Journal of Chemical Physics, 2019, 151, 034702.	1.2	2
17	Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer. Chemical Reviews, 2019, 119, 11945-11979.	23.0	273
18	Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials. ACS Catalysis, 2019, 9, 10126-10141.	5.5	295

#	Article	IF	CITATIONS
19	g-C ₃ N ₄ promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. Journal of Materials Chemistry A, 2019, 7, 5020-5030.	5.2	152
20	Unifying the Hydrogen Evolution and Oxidation Reactions Kinetics in Base by Identifying the Catalytic Roles of Hydroxyl-Water-Cation Adducts. Journal of the American Chemical Society, 2019, 141, 3232-3239.	6.6	220
21	Palladium–Ceria Catalysts with Enhanced Alkaline Hydrogen Oxidation Activity for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2019, 2, 4999-5008.	2.5	56
22	Effect of Pyrolysis Atmosphere and Electrolyte pH on the Oxygen Reduction Activity, Stability and Spectroscopic Signature of FeN _x Moieties in Fe-N-C Catalysts. Journal of the Electrochemical Society, 2019, 166, F3311-F3320.	1.3	70
23	Effect of silver coating on electrochemical performance of 0.5Li2MnO3.0.5 LiMn1/3Ni1/3Co1/3O2 cathode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 1593-1604.	1.2	8
24	The Challenge of Achieving a High Density of Fe-Based Active Sites in a Highly Graphitic Carbon Matrix. Catalysts, 2019, 9, 144.	1.6	22
25	Xâ€Ray Absorption Spectroscopy Characterizations on PGMâ€Free Electrocatalysts: Justification, Advantages, and Limitations. Advanced Materials, 2019, 31, e1805157.	11.1	48
26	Application of X-ray photoelectron spectroscopy to studies of electrodes in fuel cells and electrolyzers. Journal of Electron Spectroscopy and Related Phenomena, 2019, 231, 127-139.	0.8	21
27	Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N ₄ Active Site Identification Revealed by X-ray Absorption Spectroscopy. ACS Catalysis, 2018, 8, 2824-2832.	5.5	433
28	Electrospun Fiber Mat Cathode with Platinumâ€Groupâ€Metalâ€Free Catalyst Powder and Nafion/PVDF Binder. ChemElectroChem, 2018, 5, 1537-1542.	1.7	22
29	Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles. Nano Letters, 2018, 18, 798-804.	4.5	162
30	Anion Resistant Oxygen Reduction Electrocatalyst in Phosphoric Acid Fuel Cell. ACS Catalysis, 2018, 8, 3833-3843.	5.5	53
31	Current understandings of the sluggish kinetics of the hydrogen evolution and oxidation reactions in base. Current Opinion in Electrochemistry, 2018, 12, 209-217.	2.5	64
32	Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Electrolytes. ACS Catalysis, 2018, 8, 6665-6690.	5.5	289
33	Synthesis of highly-active Fe–N–C catalysts for PEMFC with carbide-derived carbons. Journal of Materials Chemistry A, 2018, 6, 14663-14674.	5.2	94
34	Resolving Challenges of Mass Transport in Non Pt-Group Metal Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2018, 165, F589-F596.	1.3	12
35	Highly active nanostructured palladium-ceria electrocatalysts for the hydrogen oxidation reaction in alkaline medium. Nano Energy, 2017, 33, 293-305.	8.2	147
36	Asymmetric Volcano Trend in Oxygen Reduction Activity of Pt and Non-Pt Catalysts: <i>In Situ</i> Identification of the Site-Blocking Effect. Journal of the American Chemical Society, 2017, 139, 1384-1387.	6.6	114

#	Article	IF	CITATIONS
37	Solid Phase FePC Catalysts for Increased Stability of Oxygen Reduction Reaction Intermediates at the Cathode/Electrolyte Interface in Lithium Air Batteries. Journal of the Electrochemical Society, 2017, 164, A760-A769.	1.3	15
38	Highly Active and Stable Fe–N–C Catalyst for Oxygen Depolarized Cathode Applications. Langmuir, 2017, 33, 9246-9253.	1.6	23
39	Tuning Nb–Pt Interactions To Facilitate Fuel Cell Electrocatalysis. ACS Catalysis, 2017, 7, 4936-4946.	5.5	49
40	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€N Catalysts. Angewandte Chemie, 2017, 129, 8935-8938.	1.6	16
41	Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2017, 139, 7893-7903.	6.6	135
42	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€Nâ€C Catalysts. Angewandte Chemie - International Edition, 2017, 56, 8809-8812.	7.2	176
43	Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media. Journal of Physical Chemistry Letters, 2017, 8, 2881-2886.	2.1	89
44	Electrochemical and In Situ Spectroscopic Evidences toward Empowering Ruthenium-Based Chalcogenides as Solid Acid Fuel Cell Cathodes. ACS Catalysis, 2017, 7, 581-591.	5.5	10
45	Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media. Angewandte Chemie, 2017, 129, 15800-15804.	1.6	23
46	Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media. Angewandte Chemie - International Edition, 2017, 56, 15594-15598.	7.2	194
47	Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nature Communications, 2017, 8, 957.	5.8	443
48	Hydrogen oxidation reaction in alkaline media: Relationship between electrocatalysis and electrochemical double-layer structure. Nano Energy, 2017, 41, 765-771.	8.2	89
49	Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy, 2016, 29, 65-82.	8.2	269
50	Engendering anion immunity in oxygen consuming cathodes based on Fe-Nx electrocatalysts: Spectroscopic and electrochemical advanced characterizations. Applied Catalysis B: Environmental, 2016, 198, 318-324.	10.8	53
51	Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy and Environmental Science, 2016, 9, 2418-2432.	15.6	472
52	Circumventing Metal Dissolution Induced Degradation of Pt-Alloy Catalysts in Proton Exchange Membrane Fuel Cells: Revealing the Asymmetric Volcano Nature of Redox Catalysis. ACS Catalysis, 2016, 6, 928-938.	5.5	63
53	Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catalysis, 2016, 6, 155-161. 	5.5	413
54	Membrane Electrode Assembly with Ultra Low Platinum Loading for Cathode Electrode of PEM Fuel Cell by Using Sputter Deposition. Fuel Cells, 2015, 15, 288-297.	1.5	51

#	Article	IF	CITATIONS
55	Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. ACS Nano, 2015, 9, 12496-12505.	7.3	499
56	Composite Ni/NiO-Cr ₂ O ₃ Catalyst for Alkaline Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2015, 119, 5467-5477.	1.5	121
57	Activity Descriptor Identification for Oxygen Reduction on Platinum-Based Bimetallic Nanoparticles: <i>In Situ</i> Observation of the Linear Composition–Strain–Activity Relationship. ACS Nano, 2015, 9, 387-400.	7.3	148
58	Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy, 2015, 16, 293-300.	8.2	190
59	Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nature Communications, 2015, 6, 7343.	5.8	583
60	A Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1236-A1245.	1.3	39
61	A high rate Li-rich layered MNC cathode material for lithium-ion batteries. RSC Advances, 2015, 5, 27375-27386.	1.7	58
62	Spectroscopic in situ Measurements of the Relative Pt Skin Thicknesses and Porosities of Dealloyed PtMn (Ni, Co) Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 757-765.	1.5	35
63	Oxygen reduction on nanocrystalline ruthenia – local structure effects. RSC Advances, 2015, 5, 1235-1243.	1.7	24
64	Improved Oxygen Reduction Activity and Durability of Dealloyed PtCo _{<i>x</i>} Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects. ACS Catalysis, 2015, 5, 176-186.	5.5	119
65	The Role of OOH Binding Site and Pt Surface Structure on ORR Activities. Journal of the Electrochemical Society, 2014, 161, F1323-F1329.	1.3	32
66	Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems. Journal of Physical Chemistry C, 2014, 118, 8999-9008.	1.5	461
67	Solvent-Coupled Catalysis of the Oxygen Electrode Reactions in Lithium-Air Batteries. Journal of the Electrochemical Society, 2014, 161, A1706-A1715.	1.3	37
68	Mechanistic studies of oxygen reduction on Fe-PEI derived non-PGM electrocatalysts. Applied Catalysis B: Environmental, 2014, 150-151, 179-186.	10.8	61
69	Microelectrode Diagnostics of Lithium-Air Batteries. Journal of the Electrochemical Society, 2014, 161, A381-A392.	1.3	46
70	<i>In Situ</i> Spectroscopic Evidence for Ordered Core–Ultrathin Shell Pt ₁ Co ₁ Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of Physical Chemistry C, 2014, 118, 20496-20503.	1.5	36
71	Highly Stable Pt–Au@Ru/C Catalyst Nanoparticles for Methanol Electro-oxidation. Journal of Physical Chemistry C, 2013, 117, 1457-1467.	1.5	36
72	The role of electronic properties of Pt and Pt alloys for enhanced reformate electro-oxidation in polymer electrolyte membrane fuel cells. Electrochimica Acta, 2013, 107, 155-163.	2.6	42

#	Article	IF	CITATIONS
73	Cobalt Phthalocyanine Catalyzed Lithium-Air Batteries. Journal of the Electrochemical Society, 2013, 160, A1577-A1586.	1.3	46
74	Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry. Journal of the American Chemical Society, 2013, 135, 15443-15449.	6.6	719
75	In situ X-ray absorption spectroscopy on probing the enhanced electrochemical activity of ternary PtRu@Pb catalysts. Electrochimica Acta, 2013, 108, 288-295.	2.6	7
76	Structure–property–activity correlations of Pt-bimetallic nanoparticles: A theoretical study. Electrochimica Acta, 2013, 88, 604-613.	2.6	47
77	Fundamental Aspects of ad-Metal Dissolution and Contamination in Low and Medium Temperature Fuel Cell Electrocatalysis: A Cu Based Case Study Using In Situ Electrochemical X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 4585-4596.	1.5	30
78	Mitigating Phosphate Anion Poisoning of Cathodic Pt/C Catalysts in Phosphoric Acid Fuel Cells. Journal of Physical Chemistry C, 2013, 117, 4877-4887.	1.5	95
79	Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media. Advances in Physical Chemistry, 2012, 2012, 1-17.	2.0	320
80	Mass Transport and Oxygen Reduction Kinetics at an Anion Exchange Membrane Interface: Microelectrode Studies on Effect of Carbonate Exchange. ECS Electrochemistry Letters, 2012, 1, F16-F19.	1.9	25
81	Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Liâ€"Air Batteries. Journal of Physical Chemistry C, 2012, 116, 20755-20764.	1.5	193
82	Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Physical Chemistry Chemical Physics, 2012, 14, 11673.	1.3	622
83	Zn-Doped RuO ₂ electrocatalyts for Selective Oxygen Evolution: Relationship between Local Structure and Electrocatalytic Behavior in Chloride Containing Media. Chemistry of Materials, 2011, 23, 200-207.	3.2	62
84	Synthesis, Structure and Electrochemistry of Lithium Vanadium Phosphate Cathode Materials. Journal of the Electrochemical Society, 2011, 158, A1250.	1.3	59
85	Unveiling N-Protonation and Anion-Binding Effects on Fe/N/C Catalysts for O ₂ Reduction in Proton-Exchange-Membrane Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 16087-16097.	1.5	300
86	Active tuning of a microstrip hairpin-line microwave bandpass filter on a polycrystalline yttrium iron garnet substrate using small magnetic fields. Journal of Applied Physics, 2011, 109, .	1.1	17
87	Electrochemical Kinetics and X-ray Absorption Spectroscopic Investigations of Oxygen Reduction on Chalcogen-Modified Ruthenium Catalysts in Alkaline Media. Journal of Physical Chemistry C, 2011, 115, 12650-12664.	1.5	35
88	Analysis of Double Layer and Adsorption Effects at the Alkaline Polymer Electrolyte-Electrode Interface. Journal of the Electrochemical Society, 2011, 158, B1423.	1.3	51
89	Influence of Inner- and Outer-Sphere Electron Transfer Mechanisms during Electrocatalysis of Oxygen Reduction in Alkaline Media. Journal of Physical Chemistry C, 2011, 115, 18015-18026.	1.5	341
90	Effect of praseodymium oxide and cerium–praseodymium mixed oxide in the Pt electrocatalyst performance for the oxygen reduction reaction in PAFCs. Journal of Applied Electrochemistry, 2011, 41, 891-899.	1.5	12

#	Article	IF	CITATIONS
91	Electrocatalysis of oxygen reduction on carbon-supported PtCo catalysts prepared by water-in-oil micro-emulsion. Electrochimica Acta, 2010, 55, 1709-1719.	2.6	57
92	Fundamental Aspects of Spontaneous Cathodic Deposition of Ru onto Pt/C Electrocatalysts and Membranes under Direct Methanol Fuel Cell Operating Conditions: An in Situ X-ray Absorption Spectroscopy and Electron Spin Resonance Study. Journal of Physical Chemistry C, 2010, 114, 1028-1040.	1.5	67
93	Contrast in Metalâ^'Ligand Effects on Pt _{<i>n</i>} M Electrocatalysts with M Equal Ru vs Mo and Sn As Exhibited by in Situ XANES and EXAFS Measurements in Methanol. Journal of Physical Chemistry C, 2010, 114, 442-453.	1.5	47
94	Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals. Physical Chemistry Chemical Physics, 2010, 12, 12544.	1.3	127
95	Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method. Electrochimica Acta, 2009, 54, 6756-6766.	2.6	29
96	Local Structure of Nanocrystalline Ru _{1â~'<i>x</i>} Ni _{<i>x</i>} O _{2â~'Î} Dioxide and Its Implications for Electrocatalytic Behavior—An XPS and XAS Study. Journal of Physical Chemistry C, 2009, 113, 21657-21666.	1.5	45
97	Fundamental Investigation of Oxygen Reduction Reaction on Rhodium Sulfide-Based Chalcogenides. Journal of Physical Chemistry C, 2009, 113, 6955-6968.	1.5	46
98	Degradation mechanism study of perfluorinated proton exchange membrane under fuel cell operating conditions. Electrochimica Acta, 2008, 53, 3279-3295.	2.6	165
99	Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications. Electrochimica Acta, 2008, 53, 5587-5596.	2.6	42
100	Direct Spectroscopic Observation of the Structural Origin of Peroxide Generation from Co-Based Pyrolyzed Porphyrins for ORR Applications. Journal of Physical Chemistry C, 2008, 112, 8839-8849.	1.5	215
101	Investigation into the Competitive and Site-Specific Nature of Anion Adsorption on Pt Using In Situ X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 18087-18097.	1.5	122
102	PtM/C Catalyst Prepared Using Reverse Micelle Method for Oxygen Reduction Reaction in PEM Fuel Cells. Journal of Physical Chemistry C, 2008, 112, 1146-1157.	1.5	102
103	Multicomponent 5V Cathodes for Li-ion Batteries. Materials Research Society Symposia Proceedings, 2008, 1127, 1.	0.1	Ο
104	Functionalization of FeCo alloy nanoparticles with highly dielectric amorphous oxide coatings. Journal of Applied Physics, 2008, 103, 07D532.	1.1	25
105	In Situ XAS Investigation of Electrocatalysts Surface Poisoning by Halides. ECS Transactions, 2007, 11, 903-911.	0.3	2
106	CO Coverage/Oxidation Correlated with PtRu Electrocatalyst Particle Morphology in 0.3â€,M Methanol by In Situ XAS. Journal of the Electrochemical Society, 2007, 154, A396.	1.3	76
107	Carbon-supported low-loading rhodium sulfide electrocatalysts for oxygen depolarized cathode applications. Applied Catalysis A: General, 2007, 326, 227-235.	2.2	53
108	Chalcogenide electrocatalysts for oxygen-depolarized aqueous hydrochloric acid electrolysis. Electrochimica Acta, 2007, 52, 6282-6294.	2.6	58

#	Article	IF	CITATIONS
109	High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition. Electrochimica Acta, 2006, 51, 4680-4692.	2.6	109
110	X-Ray Absorption Spectroscopy Studies of Water Activation on an Rh[sub x]S[sub y] Electrocatalyst for Oxygen Reduction Reaction Applications. Electrochemical and Solid-State Letters, 2006, 9, A430.	2.2	31
111	Toward Improving the Performance of PEM Fuel Cell by Using Mix Metal Electrodes Prepared by Dual IBAD. Journal of the Electrochemical Society, 2006, 153, A366.	1.3	25
112	Investigation of Durability Issues of Selected Nonfluorinated Proton Exchange Membranes for Fuel Cell Application. Journal of the Electrochemical Society, 2006, 153, A1062.	1.3	121
113	Low temperature performance of copper/nickel modified LiMn2O4 spinels. Electrochimica Acta, 2005, 50, 1931-1937.	2.6	34
114	Dual Ion-Beam-Assisted Deposition as a Method to Obtain Low Loading-High Performance Electrodes for PEMFCs. Electrochemical and Solid-State Letters, 2005, 8, A504.	2.2	21
115	Unexpected 5 V Behavior of Zn-Doped Mn Spinel Cathode Material. Electrochemical and Solid-State Letters, 2005, 8, A141.	2.2	25
116	Correlation of Water Activation, Surface Properties, and Oxygen Reduction Reactivity of Supported Pt–M/C Bimetallic Electrocatalysts Using XAS. Journal of the Electrochemical Society, 2005, 152, A2159.	1.3	143
117	Origin of 5 V Electrochemical Activity Observed in Non-Redox Reactive Divalent Cation Doped LiM[sub 0.5â^'x]Mn[sub 1.5+x]O[sub 4]â€,(0â‰ജâ‰0.5)Cathode Materials. Journal of the Electrochemical Society, 2005 152, A1902.	, 1.3	25
118	Potential Shift for OH(ads) Formation on the Pt Skin on Pt[sub 3]Co(111) Electrodes in Acid. Journal of the Electrochemical Society, 2005, 152, E193.	1.3	58
119	Activation Energies for Oxygen Reduction on Platinum Alloys:Â Theory and Experiment. Journal of Physical Chemistry B, 2005, 109, 1198-1203.	1.2	176
120	Electrocatalysis of CO Tolerance by Carbon-Supported PtMo Electrocatalysts in PEMFCs. Journal of the Electrochemical Society, 2004, 151, A1094.	1.3	105
121	In situ synchrotron X-ray studies on copper–nickel 5 V Mn oxide spinel cathodes for Li-ion batteries. Electrochimica Acta, 2004, 49, 3373-3382.	2.6	78
122	Oxygen reduction and transport characteristics at a platinum and alternative proton conducting membrane interface. Journal of Electroanalytical Chemistry, 2004, 568, 273-291.	1.9	50
123	Oxygen Reduction Kinetics in Low and Medium Temperature Acid Environment:Â Correlation of Water Activation and Surface Properties in Supported Pt and Pt Alloy Electrocatalysts. Journal of Physical Chemistry B, 2004, 108, 11011-11023.	1.2	297
124	In situ X-Ray Absorption Spectroscopy of Carbon-Supported Pt and Pt-Alloy Electrocatalysts: Correlation of Electrocatalytic Activity with Particle Size and Alloying. ChemInform, 2003, 34, no.	0.1	4
125	Oxygen permeation studies on alternative proton exchange membranes designed for elevated temperature operation. Electrochimica Acta, 2003, 48, 1845-1859.	2.6	87
126	Electrocatalysis of reformate tolerance in proton exchange membranes fuel cells: Part I. Journal of Electroanalytical Chemistry, 2003, 554-555, 307-324.	1.9	82

#	Article	IF	CITATIONS
127	An investigation of proton conduction in select PEM's and reaction layer interfaces-designed for elevated temperature operation. Journal of Membrane Science, 2003, 219, 123-136.	4.1	112
128	Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: electrochemical and in situ synchrotron spectroscopy. Electrochimica Acta, 2002, 47, 3219-3231.	2.6	198
129	In Situ X-Ray Absorption and Diffraction Study of the Li Reaction with a Tin Composite Oxide Glass. Journal of the Electrochemical Society, 2000, 147, 869.	1.3	22
130	[sup 6]Li and [sup 7]Li Magic-Angle Spinning Nuclear Magnetic Resonance and In Situ X-Ray Diffraction Studies of the Charging and Discharging of Li[sub x]Mn[sub 2]O[sub 4] at 4 V. Journal of the Electrochemical Society, 2000, 147, 803.	1.3	72
131	An In Situ Xâ€Ray Absorption Spectroscopy Investigation of the Effect of Sn Additions to Carbon‣upported Pt Electrocatalysts: Part I. Journal of the Electrochemical Society, 1999, 146, 600-606.	1.3	134
132	Investigation of Enhanced CO Tolerance in Proton Exchange Membrane Fuel Cells by Carbon Supported PtMo Alloy Catalyst. Electrochemical and Solid-State Letters, 1999, 2, 12.	2.2	183
133	LiNi x Cu0.5 â~ x Mn1.5 O 4 Spinel Electrodes, Superior Highâ€Potential Cathode Materials for Electrochemical and Structural Studies. Journal of the Electrochemical Society, 1999, 146, 908-913.	Li Batterie 1.3	es: . 111
134	Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. Journal of Electroanalytical Chemistry, 1998, 448, 163-171.	1.9	374
135	Structural Evolution of Li x Mn2 O 4 in Lithiumâ€ion Battery Cells Measured In Situ Using Synchrotron Xâ€Ray Diffraction Techniques. Journal of the Electrochemical Society, 1998, 145, 466-472.	1.3	104
136	LiCu x Mn2 ⴒ x  O 4 Spinels  ( 0.1 ⩽ x ⩽ 0.5 )  : A Measurements. Journal of the Electrochemical Society, 1998, 145, 3383-3386.	New Clas	s of Cathode
137	In situ Synchrotron X-ray Studies on Novel Mn Oxide Spinel Cathodes for Li-ion Batteries: Influence of Other Transition Elements. Materials Research Society Symposia Proceedings, 1998, 548, 149.	0.1	4
138	⁶ Li and ⁷ Li MAS NMR and In Situ X-ray Diffraction Studies of Lithium Manganate Cathode Materials. Materials Research Society Symposia Proceedings, 1998, 548, 197.	0.1	1
139	Effect of Zn Additives to the Electrolyte on the Corrosion and Cycle Life of Some  AB 5 H  x Met Hydride Electrodes. Journal of the Electrochemical Society, 1997, 144, L258-L261.	al 1.3	14
140	Synchrotron xâ€ray diffraction studies of the structural properties of electrode materials in operating battery cells. Applied Physics Letters, 1996, 69, 194-196.	1.5	33
141	Hydrogen Electrocatalysis by Carbon Supported Pt and Pt Alloys: An In Situ Xâ€Ray Absorption Study. Journal of the Electrochemical Society, 1996, 143, 2285-2294.	1.3	63
142	In Situ Xâ€Ray Absorption Studies of a Ptâ€Ru Electrocatalyst. Journal of the Electrochemical Society, 1995, 142, 3399-3404.	1.3	221
143	Effect of Preparation Conditions of Pt Alloys on Their Electronic, Structural, and Electrocatalytic Activities for Oxygen Reduction - XRD, XAS, and Electrochemical Studies. The Journal of Physical Chemistry, 1995, 99, 4577-4589.	2.9	415
144	Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction: An In Situ XANES and EXAFS Investigation. Journal of the Electrochemical Society, 1995, 142, 1409-1422.	1.3	1,095

#	Article	IF	CITATIONS
145	Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. Journal of Electroanalytical Chemistry, 1993, 357, 201-224.	1.9	601
146	Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells. Electrochimica Acta, 1993, 38, 1661-1669.	2.6	132
147	Particle size and structural effects in platinum electrocatalysis. Journal of Applied Electrochemistry, 1990, 20, 537-548.	1.5	277