Christopher W Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3822164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the United States of America, 2014, 111, 12013-12018.	7.1	652
2	Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4350-E4357.	7.1	632
3	Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 2016, 42, 40-53.	6.6	517
4	Adipic acid production from lignin. Energy and Environmental Science, 2015, 8, 617-628.	30.8	499
5	Characterization and engineering of a two-enzyme system for plastics depolymerization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25476-25485.	7.1	262
6	Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metabolic Engineering, 2015, 28, 240-247.	7.0	205
7	Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metabolic Engineering Communications, 2016, 3, 111-119.	3.6	194
8	cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization. Green Chemistry, 2016, 18, 3397-3413.	9.0	147
9	Innovative Chemicals and Materials from Bacterial Aromatic Catabolic Pathways. Joule, 2019, 3, 1523-1537.	24.0	142
10	A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nature Communications, 2018, 9, 2487.	12.8	135
11	Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chemistry, 2018, 20, 5007-5019.	9.0	127
12	Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metabolic Engineering Communications, 2017, 5, 19-25.	3.6	93
13	Thermochemical wastewater valorization <i>via</i> enhanced microbial toxicity tolerance. Energy and Environmental Science, 2018, 11, 1625-1638.	30.8	77
14	Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440. Metabolic Engineering, 2020, 59, 64-75.	7.0	76
15	Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440. Metabolic Engineering Communications, 2017, 4, 22-28.	3.6	74
16	Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metabolic Engineering, 2021, 67, 250-261.	7.0	74
17	Accelerating pathway evolution by increasing the gene dosage of chromosomal segments. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7105-7110.	7.1	52
18	Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Metabolic Engineering, 2021, 65, 111-122.	7.0	48

#	Article	IF	CITATIONS
19	Vgll2a is required for neural crest cell survival during zebrafish craniofacial development. Developmental Biology, 2011, 357, 269-281.	2.0	45
20	Enabling microbial syringol conversion through structure-guided protein engineering. Proceedings of the United States of America, 2019, 116, 13970-13976.	7.1	41
21	Gene amplification, laboratory evolution, and biosensor screening reveal MucK as a terephthalic acid transporter in Acinetobacter baylyi ADP1. Metabolic Engineering, 2020, 62, 260-274.	7.0	35
22	The L6 domain tetraspanin Tm4sf4 regulates endocrine pancreas differentiation and directed cell migration. Development (Cambridge), 2011, 138, 3213-3224.	2.5	32
23	A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution. Metabolic Engineering Communications, 2018, 6, 33-38.	3.6	29
24	Machine-learning from Pseudomonas putida KT2440 transcriptomes reveals its transcriptional regulatory network. Metabolic Engineering, 2022, 72, 297-310.	7.0	28
25	Debottlenecking 4-hydroxybenzoate hydroxylation in Pseudomonas putida KT2440 improves muconate productivity from p-coumarate. Metabolic Engineering, 2022, 70, 31-42.	7.0	25
26	Sensor-Enabled Alleviation of Product Inhibition in Chorismate Pyruvate-Lyase. ACS Synthetic Biology, 2019, 8, 775-786.	3.8	23
27	The Coprinus cinereus adherin Rad9 functions in Mre11-dependent DNA repair, meiotic sister-chromatid cohesion, and meiotic homolog pairing. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14958-14963.	7.1	21
28	Engineering a Cytochrome P450 for Demethylation of Lignin-Derived Aromatic Aldehydes. Jacs Au, 2021, 1, 252-261.	7.9	20
29	Biological upgrading of pyrolysis-derived wastewater: Engineering Pseudomonas putida for alkylphenol, furfural, and acetone catabolism and (methyl)muconic acid production. Metabolic Engineering, 2021, 68, 14-25.	7.0	20
30	Production of β-ketoadipic acid from glucose in Pseudomonas putida KT2440 for use in performance-advantaged nylons. Cell Reports Physical Science, 2022, 3, 100840.	5.6	18
31	Nkx2.2 Activates the Ghrelin Promoter in Pancreatic Islet Cells. Molecular Endocrinology, 2010, 24, 381-390.	3.7	16
32	High-Throughput Large-Scale Targeted Proteomics Assays for Quantifying Pathway Proteins in Pseudomonas putida KT2440. Frontiers in Bioengineering and Biotechnology, 2020, 8, 603488.	4.1	10
33	Bioconversion of wastewater-derived cresols to methyl muconic acids for use in performance-advantaged bioproducts. Green Chemistry, 2022, 24, 3677-3688.	9.0	4
34	Corrigendum to "Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440―[Metab. Eng. 59 (2020) 64–75]. Metabolic Engineering, 2022, 72, 66-67.	7.0	0