Tao Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3821888/publications.pdf Version: 2024-02-01

TAO SONC

#	Article	IF	CITATIONS
1	Freestanding silicon nanowires mesh for efficient electricity generation from evaporation-induced water capillary flow. Nano Energy, 2022, 94, 106917.	8.2	28
2	Revealing a Zinc Oxide/Perovskite Luminescence Quenching Mechanism Targeting Low-Roll-off Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 3121-3129.	2.1	7
3	A Hygroscopic Janus Heterojunction for Continuous Moisture-Triggered Electricity Generators. ACS Applied Materials & Interfaces, 2022, 14, 19569-19578.	4.0	15
4	Selfâ€Healing Perovskite Films Enabled by Fluorinated Cross‣inked Network Targeting Flexible Lightâ€Emitting Diode. Advanced Optical Materials, 2022, 10, .	3.6	5
5	Integrating hydrovoltaic device with triboelectric nanogenerator to achieve simultaneous energy harvesting from water droplet and vapor. Nano Energy, 2022, 100, 107495.	8.2	15
6	Recent Progress on Patterning Strategies for Perovskite Lightâ€Emitting Diodes toward a Fullâ€Color Display Prototype. Small Science, 2021, 1, 2000050.	5.8	39
7	Efficient and Bright Pure-Blue All-Inorganic Perovskite Light-Emitting Diodes from an Ecofriendly Alloy. Journal of Physical Chemistry Letters, 2021, 12, 1747-1753.	2.1	25
8	Asymmetric Charged Conductive Porous Films for Electricity Generation from Water Droplets <i>via</i> Capillary Infiltrating. ACS Applied Materials & Interfaces, 2021, 13, 17902-17909.	4.0	32
9	Bioinspired Hierarchical Nanofabric Electrode for Silicon Hydrovoltaic Device with Record Power Output. ACS Nano, 2021, 15, 7472-7481.	7.3	65
10	Electronâ€Selective Passivation Contacts for Highâ€Efficiency Nanostructured Silicon Hydrovoltaic Devices. Advanced Materials Interfaces, 2021, 8, 2101213.	1.9	13
11	Unveiling the critical role of ammonium bromide in blue emissive perovskite films. Nanoscale, 2021, 13, 13497-13505.	2.8	7
12	Revealing Crystallization Dynamics and the Compositional Control Mechanism of 2D Perovskite Film Growth by In Situ Synchrotron-Based GIXRD. ACS Energy Letters, 2020, 5, 8-16.	8.8	68
13	Highâ€Performance Perovskite Lightâ€Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation. Angewandte Chemie, 2020, 132, 4128-4134.	1.6	8
14	Highâ€Performance Perovskite Lightâ€Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation. Angewandte Chemie - International Edition, 2020, 59, 4099-4105.	7.2	130
15	Strontium Ion B‣ite Substitution for Spectral‣table Blue Emitting Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2001073.	3.6	28
16	In-situ passivation perovskite targeting efficient light-emitting diodes via spontaneously formed silica network. Nano Energy, 2020, 78, 105134.	8.2	28
17	Thermal-induced interface degradation in perovskite light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 15079-15085.	2.7	30
18	Constant Electricity Generation in Nanostructured Silicon by Evaporationâ€Driven Water Flow. Angewandte Chemie - International Edition, 2020, 59, 10619-10625.	7.2	124

TAO SONG

#	Article	IF	CITATIONS
19	High-Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact. ACS Applied Materials & Interfaces, 2020, 12, 36681-36687.	4.0	35
20	Prominent Heat Dissipation in Perovskite Light-Emitting Diodes with Reduced Efficiency Droop for Silicon-Based Display. Journal of Physical Chemistry Letters, 2020, 11, 3689-3698.	2.1	37
21	Spectral-Stable Blue Emission from Moisture-Treated Low-Dimensional Lead Bromide-Based Perovskite Films. ACS Photonics, 2019, 6, 1728-1735.	3.2	21
22	Ultrastable and Reversible Fluorescent Perovskite Films Used for Flexible Instantaneous Display. Advanced Functional Materials, 2019, 29, 1900730.	7.8	60
23	Passivating Crystal Boundaries with Potassiumâ€Rich Phase in Organic Halide Perovskite. Solar Rrl, 2019, 3, 1900053.	3.1	64
24	Alternative Type Two-Dimensional–Three-Dimensional Lead Halide Perovskite with Inorganic Sodium Ions as a Spacer for High-Performance Light-Emitting Diodes. ACS Nano, 2019, 13, 1645-1654.	7.3	43
25	Nanoplatelet modulation in 2D/3D perovskite targeting efficient light-emitting diodes. Nanoscale, 2018, 10, 19322-19329.	2.8	20
26	Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nature Communications, 2018, 9, 3892.	5.8	379
27	Boosting Perovskite Light-Emitting Diode Performance via Tailoring Interfacial Contact. ACS Applied Materials & Interfaces, 2018, 10, 24320-24326.	4.0	96
28	Improved Performance and Stability of Allâ€Inorganic Perovskite Lightâ€Emitting Diodes by Antisolvent Vapor Treatment. Advanced Functional Materials, 2017, 27, 1700338.	7.8	221
29	Hotâ€Electron Injection in a Sandwiched TiO <i>_x</i> –Au–TiO <i>_x</i> Structure for Highâ€Performance Planar Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500038.	10.2	119