
Margarita Cabrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3821857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of Huntingtin and TDP-43 Derivatives in Fission Yeast Can Cause Both Beneficial and Toxic Effects. International Journal of Molecular Sciences, 2022, 23, 3950.	1.8	2
2	Antagonistic effects of mitochondrial matrix and intermembrane space proteases on yeast aging. BMC Biology, 2022, 20, .	1.7	2
3	Spatial sequestration of misfolded proteins as an active chaperone-mediated process during heat stress. Current Genetics, 2021, 67, 237-243.	0.8	10
4	The Hsp40 Mas5 Connects Protein Quality Control and the General Stress Response through the Thermo-sensitive Pyp1. IScience, 2020, 23, 101725.	1.9	7
5	Chaperone-Facilitated Aggregation of Thermo-Sensitive Proteins Shields Them from Degradation during Heat Stress. Cell Reports, 2020, 30, 2430-2443.e4.	2.9	33
6	APâ€3 vesicle uncoating occurs after HOPSâ€dependent vacuole tethering. EMBO Journal, 2020, 39, e105117.	3.5	21
7	A simple microfluidic platform to study age-dependent protein abundance and localization changes in Saccharomyces cerevisiae. Microbial Cell, 2017, 4, 169-174.	1.4	10
8	The Mon1-Ccz1 GEF activates the Rab7 GTPase Ypt7 via a longin fold-Rab interface and association with PI-3-P-positive membranes. Journal of Cell Science, 2014, 127, 1043-51.	1.2	84
9	Function of the Mon1-Ccz1 complex on endosomes. Small GTPases, 2014, 5, e972861.	0.7	7
10	Tracking of the dynamic localization of the Rab-specific HOPS subunits reveal their distinct interaction with Ypt7 and vacuoles. Cellular Logistics, 2014, 4, e29191.	0.9	15
11	Dynamic association of the PI3P-interacting Mon1-Ccz1 GEF with vacuoles is controlled through its phosphorylation by the type 1 casein kinase Yck3. Molecular Biology of the Cell, 2014, 25, 1608-1619.	0.9	54
12	Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria. Developmental Cell, 2014, 30, 86-94.	3.1	285
13	The BLOC-1 complex promotes endosomal maturation by recruiting the Rab5 GTPase-activating protein Msb3. Journal of Cell Biology, 2013, 201, 97-111.	2.3	42
14	Functional Separation of Endosomal Fusion Factors and the Class C Core Vacuole/Endosome Tethering (CORVET) Complex in Endosome Biogenesis. Journal of Biological Chemistry, 2013, 288, 5166-5175.	1.6	57
15	Guanine Nucleotide Exchange Factors (GEFs) Have a Critical but Not Exclusive Role in Organelle Localization of Rab GTPases. Journal of Biological Chemistry, 2013, 288, 28704-28712.	1.6	65
16	The Mon1-Ccz1 Complex Is the GEF of the Late Endosomal Rab7 Homolog Ypt7. Current Biology, 2010, 20, 1654-1659.	1.8	327
17	Phosphorylation of a membrane curvature–sensing motif switches function of the HOPS subunit Vps41 in membrane tethering. Journal of Cell Biology, 2010, 191, 845-859.	2.3	107

18 Guiding Endosomal Maturation. Cell, 2010, 141, 404-406.

13.5 23

#	Article	IF	CITATIONS
19	Vps41 Phosphorylation and the Rab Ypt7 Control the Targeting of the HOPS Complex to Endosome–Vacuole Fusion Sites. Molecular Biology of the Cell, 2009, 20, 1937-1948.	0.9	82
20	UVRAG reveals its second nature. Nature Cell Biology, 2008, 10, 759-761.	4.6	10
21	The vacuolar V ₁ /V ₀ â€ATPase is involved in the release of the HOPS subunit Vps41 from vacuoles, vacuole fragmentation and fusion. FEBS Letters, 2008, 582, 1558-1563.	1.3	24
22	Chapter Thirteen Purification and In Vitro Analysis of Yeast Vacuoles. Methods in Enzymology, 2008, 451, 177-196.	0.4	35
23	Golgi structural stability and biogenesis depend on associated PKA activity. Journal of Cell Science, 2006, 119, 3764-3775.	1.2	37
24	The Retrieval Function of the KDEL Receptor Requires PKA Phosphorylation of Its C-Terminus. Molecular Biology of the Cell, 2003, 14, 4114-4125.	0.9	92