Christer Persson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3821647/publications.pdf

Version: 2024-02-01

430874 345221 1,328 43 18 36 citations h-index g-index papers 45 45 45 1173 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Precipitation of γ' during cooling of nickel-base superalloy Haynes 282. Philosophical Magazine Letters, 2021, 101, 30-39.	1.2	6
2	Effects of Temperature on the Evolution of Yield Surface and Stress Asymmetry in A356–T7 Cast Aluminium Alloy. Materials, 2021, 14, 7898.	2.9	5
3	Damage evolution around white etching layer during uniaxial loading. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 201-208.	3.4	5
4	Microstructure-dependent deformation behaviour of a low $\hat{I}^3 \hat{a} \in 2$ volume fraction Ni-base superalloy studied by in-situ neutron diffraction. Acta Materialia, 2020, 183, 182-195.	7.9	31
5	Effect of Strain Rate on the Deformation Behaviour of A356-T7 Cast Aluminium Alloys at Elevated Temperatures. Metals, 2020, 10, 1239.	2.3	5
6	Effect of Temperature on Deformation and Fatigue Behaviour of A356–T7 Cast Aluminium Alloys Used in High Specific Power IC Engine Cylinder Heads. Materials, 2020, 13, 1202.	2.9	10
7	Effects of Dwell Time on the Deformation and Fatigue Behaviour of A356-T7 Cast Aluminium Alloys Used in High Specific Power IC Engine Cylinder Heads. Materials, 2020, 13, 2727.	2.9	5
8	Deformation and Fatigue Behaviour of A356-T7 Cast Aluminium Alloys Used in High Specific Power IC Engines. Materials, 2019, 12, 3033.	2.9	7
9	Effect of microstructure on dynamic shear localisation in Alloy 718. Mechanics of Materials, 2017, 109, 88-100.	3.2	23
10	Influence of heat treatment on the microstructure and tensile properties of Ni-base superalloy Haynes 282. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 520-530.	5 . 6	101
11	Alloy design for intrinsically ductile refractory high-entropy alloys. Journal of Applied Physics, 2016, 120, .	2.5	271
12	Microstructural examination of shear localisation during high strain rate deformation of Alloy 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 363-372.	5.6	32
13	Experimental observations and modelling of cyclic and relaxation behaviour of the Ni-based superalloy Haynes 282. International Journal of Fatigue, 2016, 87, 180-191.	5.7	11
14	3D characterisation of RCF crack networks. MATEC Web of Conferences, 2014, 12, 06001.	0.2	0
15	Interaction between cracks and microstructure in three dimensions for rolling contact fatigue in railway rails. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 280-289.	3.4	10
16	Analysis of wear debris in rolling contact fatigue cracks of pearlitic railway wheels. Wear, 2014, 314, 51-56.	3.1	14
17	Rapid thermomechanical tempering of iron–carbon martensite. Materials Science and Technology, 2014, 30, 1832-1834.	1.6	1
18	Dynamic strain aging in Haynes 282 superalloy. MATEC Web of Conferences, 2014, 14, 16002.	0.2	9

#	Article	IF	Citations
19	SEM study of overload effects during fatigue crack growth using an image analysing technique and potential drop measures. Fatigue and Fracture of Engineering Materials and Structures, 2010, 33, 105-115.	3.4	3
20	Thermo-mechanical fatigue crack propagation experiments in Inconel 718. International Journal of Fatigue, 2009, 31, 1318-1326.	5.7	26
21	In situ scanning electron microscopy study of fatigue crack propagation. Strength of Materials, 2008, 40, 146-149.	0.5	1
22	In-situ ESEM study of thermo-mechanical fatigue crack propagation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 496, 200-208.	5.6	14
23	Computationally efficient modelling of short fatigue crack growth using dislocation formulations. Engineering Fracture Mechanics, 2008, 75, 3189-3205.	4.3	9
24	Determination of displacements around fatigue cracks using image analysis of ⟨i⟩inâ€situ⟨ i⟩ scanning electron microscope images. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31, 1091-1100.	3 . 4	2
25	On the suitability of carbon nanotube forests as non-stick surfaces for nanomanipulation. Soft Matter, 2008, 4, 392.	2.7	14
26	Atomistic simulations of tensile and bending properties of single-crystal bcc iron nanobeams. Physical Review B, 2007, 76, .	3.2	41
27	High-temperature fatigue crack growth in Inconel 718 subjected to high strain amplitudes. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 863-875.	3.4	3
28	Experimental and numerical investigation of crack closure measurements with electrical potential drop technique. International Journal of Fatigue, 2006, 28, 1059-1068.	5.7	32
29	Long Crack Behavior in a Thermal Barrier Coating Upon Thermal Shock Loading. Journal of Thermal Spray Technology, 2005, 14, 258-263.	3.1	12
30	Fatigue crack propagation in Ti-6Al-4V subjected to high strain amplitudes. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28, 301-308.	3 . 4	6
31	Constitutive dependence in finiteâ€element modelling of crack closure during fatigue. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 75-87.	3.4	18
32	Experimental and Numerical Life Prediction of Thermally Cycled Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2004, 13, 415-424.	3.1	39
33	Fracture Mechanics Analysis of Microcracks in Thermally Cycled Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2004, 13, 377-380.	3.1	7
34	Numerical Modeling of Short Crack Behavior in a Thermal Barrier Coating Upon Thermal Shock Loading. Journal of Thermal Spray Technology, 2004, 13, 554-560.	3.1	12
35	In-situ SEM study of fatigue crack growth behaviour in IN718. International Journal of Fatigue, 2004, 26, 211-219.	5 . 7	76
36	Control of Thermal Spray Processes by Means of Process Maps and Process Windows. Journal of Thermal Spray Technology, 2003, 12, 44-52.	3.1	31

#	Article	IF	CITATION
37	Influence of particle in-flight characteristics on the microstructure of atmospheric plasma sprayed yttria stabilized ZrO2. Surface and Coatings Technology, 2001, 141, 115-127.	4.8	154
38	A numerical method for calculating stress intensity factors for interface cracks in bimaterials. Engineering Fracture Mechanics, 2001, 68, 235-246.	4.3	48
39	Investigation of Particle In-Flight Characteristics during Atmospheric Plasma Spraying of Yttria-Stabilized ZrO ₂ : Part 1. Experimental. Journal of Thermal Spray Technology, 2001, 10, 301-310.	3.1	22
40	Crack growth in IN718 at high temperature. International Journal of Fatigue, 2001, 23, 817-827.	5.7	47
41	Strain state in semiconductor quantum dots on surfaces: a comparison of electron microscopy and finite element calculations. Surface Science, 1998, 406, 48-56.	1.9	14
42	Modelled and measured residual stresses in plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 1997, 92, 78-86.	4.8	80
43	Observation of strain effects in semiconductor dots depending on cap layer thickness. Applied Physics Letters, 1995, 67, 1438-1440.	3.3	69