Christer Persson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3821647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alloy design for intrinsically ductile refractory high-entropy alloys. Journal of Applied Physics, 2016, 120, .	2.5	271
2	Influence of particle in-flight characteristics on the microstructure of atmospheric plasma sprayed yttria stabilized ZrO2. Surface and Coatings Technology, 2001, 141, 115-127.	4.8	154
3	Influence of heat treatment on the microstructure and tensile properties of Ni-base superalloy Haynes 282. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 520-530.	5.6	101
4	Modelled and measured residual stresses in plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 1997, 92, 78-86.	4.8	80
5	In-situ SEM study of fatigue crack growth behaviour in IN718. International Journal of Fatigue, 2004, 26, 211-219.	5.7	76
6	Observation of strain effects in semiconductor dots depending on cap layer thickness. Applied Physics Letters, 1995, 67, 1438-1440.	3.3	69
7	A numerical method for calculating stress intensity factors for interface cracks in bimaterials. Engineering Fracture Mechanics, 2001, 68, 235-246.	4.3	48
8	Crack growth in IN718 at high temperature. International Journal of Fatigue, 2001, 23, 817-827.	5.7	47
9	Atomistic simulations of tensile and bending properties of single-crystal bcc iron nanobeams. Physical Review B, 2007, 76, .	3.2	41
10	Experimental and Numerical Life Prediction of Thermally Cycled Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2004, 13, 415-424.	3.1	39
11	Experimental and numerical investigation of crack closure measurements with electrical potential drop technique. International Journal of Fatigue, 2006, 28, 1059-1068.	5.7	32
12	Microstructural examination of shear localisation during high strain rate deformation of Alloy 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 363-372.	5.6	32
13	Control of Thermal Spray Processes by Means of Process Maps and Process Windows. Journal of Thermal Spray Technology, 2003, 12, 44-52.	3.1	31
14	Microstructure-dependent deformation behaviour of a low γ′ volume fraction Ni-base superalloy studied by in-situ neutron diffraction. Acta Materialia, 2020, 183, 182-195.	7.9	31
15	Thermo-mechanical fatigue crack propagation experiments in Inconel 718. International Journal of Fatigue, 2009, 31, 1318-1326.	5.7	26
16	Effect of microstructure on dynamic shear localisation in Alloy 718. Mechanics of Materials, 2017, 109, 88-100.	3.2	23
17	Investigation of Particle In-Flight Characteristics during Atmospheric Plasma Spraying of Yttria-Stabilized ZrO ₂ : Part 1. Experimental. Journal of Thermal Spray Technology, 2001, 10, 301-310.	3.1	22
18	Constitutive dependence in finiteâ€element modelling of crack closure during fatigue. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 75-87.	3.4	18

CHRISTER PERSSON

#	Article	IF	CITATIONS
19	Strain state in semiconductor quantum dots on surfaces: a comparison of electron microscopy and finite element calculations. Surface Science, 1998, 406, 48-56.	1.9	14
20	In-situ ESEM study of thermo-mechanical fatigue crack propagation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 496, 200-208.	5.6	14
21	On the suitability of carbon nanotube forests as non-stick surfaces for nanomanipulation. Soft Matter, 2008, 4, 392.	2.7	14
22	Analysis of wear debris in rolling contact fatigue cracks of pearlitic railway wheels. Wear, 2014, 314, 51-56.	3.1	14
23	Numerical Modeling of Short Crack Behavior in a Thermal Barrier Coating Upon Thermal Shock Loading. Journal of Thermal Spray Technology, 2004, 13, 554-560.	3.1	12
24	Long Crack Behavior in a Thermal Barrier Coating Upon Thermal Shock Loading. Journal of Thermal Spray Technology, 2005, 14, 258-263.	3.1	12
25	Experimental observations and modelling of cyclic and relaxation behaviour of the Ni-based superalloy Haynes 282. International Journal of Fatigue, 2016, 87, 180-191.	5.7	11
26	Interaction between cracks and microstructure in three dimensions for rolling contact fatigue in railway rails. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 280-289.	3.4	10
27	Effect of Temperature on Deformation and Fatigue Behaviour of A356–T7 Cast Aluminium Alloys Used in High Specific Power IC Engine Cylinder Heads. Materials, 2020, 13, 1202.	2.9	10
28	Computationally efficient modelling of short fatigue crack growth using dislocation formulations. Engineering Fracture Mechanics, 2008, 75, 3189-3205.	4.3	9
29	Dynamic strain aging in Haynes 282 superalloy. MATEC Web of Conferences, 2014, 14, 16002.	0.2	9
30	Fracture Mechanics Analysis of Microcracks in Thermally Cycled Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2004, 13, 377-380.	3.1	7
31	Deformation and Fatigue Behaviour of A356-T7 Cast Aluminium Alloys Used in High Specific Power IC Engines. Materials, 2019, 12, 3033.	2.9	7
32	Fatigue crack propagation in Ti-6Al-4V subjected to high strain amplitudes. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28, 301-308.	3.4	6
33	Precipitation of γ' during cooling of nickel-base superalloy Haynes 282. Philosophical Magazine Letters, 2021, 101, 30-39.	1.2	6
34	Damage evolution around white etching layer during uniaxial loading. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 201-208.	3.4	5
35	Effect of Strain Rate on the Deformation Behaviour of A356-T7 Cast Aluminium Alloys at Elevated Temperatures. Metals, 2020, 10, 1239.	2.3	5
36	Effects of Dwell Time on the Deformation and Fatigue Behaviour of A356-T7 Cast Aluminium Alloys Used in High Specific Power IC Engine Cylinder Heads. Materials, 2020, 13, 2727.	2.9	5

CHRISTER PERSSON

#	Article	IF	CITATIONS
37	Effects of Temperature on the Evolution of Yield Surface and Stress Asymmetry in A356–T7 Cast Aluminium Alloy. Materials, 2021, 14, 7898.	2.9	5
38	High-temperature fatigue crack growth in Inconel 718 subjected to high strain amplitudes. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 863-875.	3.4	3
39	SEM study of overload effects during fatigue crack growth using an image analysing technique and potential drop measures. Fatigue and Fracture of Engineering Materials and Structures, 2010, 33, 105-115.	3.4	3
40	Determination of displacements around fatigue cracks using image analysis of <i>inâ€situ</i> scanning electron microscope images. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31, 1091-1100.	3.4	2
41	In situ scanning electron microscopy study of fatigue crack propagation. Strength of Materials, 2008, 40, 146-149.	0.5	1
42	Rapid thermomechanical tempering of iron–carbon martensite. Materials Science and Technology, 2014, 30, 1832-1834.	1.6	1
43	3D characterisation of RCF crack networks. MATEC Web of Conferences, 2014, 12, 06001.	0.2	0