Do Hwan Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3820863/publications.pdf

Version: 2024-02-01

394286 302012 1,608 48 19 39 citations h-index g-index papers 49 49 49 1109 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR. Nano Energy, 2021, 82, 105750.	8.2	220
2	Rational Design of Core@shell Structured CoS <i>_x(i>@Cu₂MoS₄ Hybridized MoS₂/N,Sâ€Codoped Graphene as Advanced Electrocatalyst for Water Splitting and Znâ€Air Battery. Advanced Energy Materials, 2020, 10, 1903289.</i>	10.2	179
3	Rational design of multifunctional electrocatalyst: An approach towards efficient overall water splitting and rechargeable flexible solid-state zinc–air battery. Applied Catalysis B: Environmental, 2022, 300, 120752.	10.8	150
4	Singleâ€Atom Coâ€Decorated MoS ₂ Nanosheets Assembled on Metal Nitride Nanorod Arrays as an Efficient Bifunctional Electrocatalyst for pHâ€Universal Water Splitting. Advanced Functional Materials, 2021, 31, 2100233.	7.8	108
5	Molybdenum and Phosphorous Dual Doping in Cobalt Monolayer Interfacial Assembled Cobalt Nanowires for Efficient Overall Water Splitting. Advanced Functional Materials, 2020, 30, 2002533.	7.8	107
6	Novel core-shell CuMo-oxynitride@N-doped graphene nanohybrid as multifunctional catalysts for rechargeable zinc-air batteries and water splitting. Nano Energy, 2021, 85, 105987.	8.2	89
7	3D nickel molybdenum oxyselenide (Ni1-xMoxOSe) nanoarchitectures as advanced multifunctional catalyst for Zn-air batteries and water splitting. Applied Catalysis B: Environmental, 2021, 286, 119909.	10.8	72
8	Ruthenium single atoms implanted continuous MoS2-Mo2C heterostructure for high-performance and stable water splitting. Nano Energy, 2021, 88, 106277.	8.2	68
9	Hierarchical 3D Oxygenated Cobalt Vanadium Selenide Nanosheets as Advanced Electrode for Flexible Zinc–Cobalt and Zinc–Air Batteries. Small, 2020, 16, e2004661.	5.2	54
10	Structural, electronic, and electrocatalytic evaluation of spinel transition metal sulfide supported reduced graphene oxide. Journal of Materials Chemistry A, 2022, 10, 1999-2011.	5.2	51
11	Atomic Heterointerface Engineering of Ni ₂ Pâ€NiSe ₂ Nanosheets Coupled ZnPâ€Based Arrays for Highâ€Efficiency Solarâ€Assisted Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	49
12	Highly Effective Freshwater and Seawater Electrolysis Enabled by Atomic Rhâ€Modulated Coâ€CoO Lateral Heterostructures. Small, 2021, 17, e2103826.	5.2	47
13	Rational Engineering Co _x O _y Nanosheets via Phosphorous and Sulfur Dualâ€Coupling for Enhancing Water Splitting and Zn–Air Battery. Advanced Functional Materials, 2021, 31, 2007822.	7.8	44
14	Activated CuNi@Ni Core@shell structures via oxygen and nitrogen dual coordination assembled on 3D CNTs-graphene hybrid for high-performance water splitting. Applied Catalysis B: Environmental, 2021, 294, 120263.	10.8	44
15	Dissociative Chemisorption of Methanol on Ge(100). Journal of Physical Chemistry C, 2007, 111, 15013-15019.	1.5	37
16	Bifunctional Catalyst Derived from Sulfur-Doped VMoO _{<i>x</i>} Nanolayer Shelled Co Nanosheets for Efficient Water Splitting. ACS Applied Materials & Description (1988).	4.0	26
17	Rational construction of Au@Co2N0.67 nanodots-interspersed 3D interconnected N-graphene hollow sphere network for efficient water splitting and Zn-air battery. Nano Energy, 2021, 89, 106420.	8.2	26
18	Bidentate Structures of Acetic Acid on Ge(100):  The Role of Carboxyl Oxygen. Journal of Physical Chemistry C, 2007, 111, 5941-5945.	1.5	23

#	Article	IF	CITATIONS
19	Atomic and electronic structure of methanol on Ge(100). Surface Science, 2010, 604, 129-135.	0.8	22
20	Atomic and electronic structure of acetic acid on Ge(100). Surface Science, 2006, 600, 3629-3632.	0.8	19
21	Atomic and Electronic Structure of Pyrrole on Ge(100). Journal of Physical Chemistry C, 2008, 112, 7412-7419.	1.5	17
22	Hydrogen-Bonded Amino Acid Network of Histidine on Ge(100). Journal of Physical Chemistry C, 2011, 115, 4636-4641.	1.5	15
23	Chemical Reactions and Adsorption Geometries of Pyrrole on Ge(100). Journal of Physical Chemistry B, 2006, 110, 7938-7943.	1.2	13
24	Adsorption Structure and Reaction Mechanism of Purine on Ge(100) Studied by Scanning Tunneling Microscopy and Theoretical Calculations. Journal of Physical Chemistry C, 2012, 116, 6953-6959.	1.5	12
25	A single atom Ir doped heterophase of a NiMoP-NiMoP _{<i>x</i>} O _{<i>y</i>} ultrathin layer assembled on CNTs-graphene for high-performance water splitting. Journal of Materials Chemistry A, 2022, 10, 14604-14612.	5.2	12
26	Discrimination of Chiral Adsorption Configurations: Styrene on Germanium (100). Journal of Physical Chemistry C, 2009, 113, 1426-1432.	1.5	10
27	Dissociative adsorption of guanine on Ge(100). Chemical Communications, 2015, 51, 12815-12818.	2.2	10
28	Chromium-rich Cr $<$ sub $<$ i> $<$ i> $<$ /sub $>$ Ir $<$ sub $>$ 1 \hat{a} $^{\circ}$ $<$ i> $>$ x $<$ /i> $<$ /sub $>$ O $<$ sub $>$ 2 $<$ /sub $>$ wire-in-tube alloys for boosted water oxidation with long standing electrocatalytic activity. Journal of Materials Chemistry A, 2022, 10, 13803-13813.	5.2	10
29	Creation and annihilation of single atom vacancy during subsurface diffusion. Physical Review B, 2010, 82, .	1.1	8
30	Subsurface Incorporation of Co Atoms into Si(100). Journal of Physical Chemistry C, 2011, 115, 15467-15470.	1.5	7
31	Functional Group-Selective Adsorption Using Scanning Tunneling Microscopy. ACS Nano, 2012, 6, 3597-3603.	7.3	6
32	Molecular tuning of amino acids to form two-dimensional molecular networks driven by conformational preorganization. Chemical Communications, 2016, 52, 14055-14058.	2.2	5
33	Chemical Reaction of Benzoic Acid with Ge(100): Effect of a Phenyl Substituent. Journal of Physical Chemistry C, 2016, 120, 14742-14748.	1.5	5
34	A first-principles study on the adsorption of ethylenediamine on Ge(100). Physical Chemistry Chemical Physics, 2017, 19, 16881-16887.	1.3	4
35	Chemisorption of Ethanol on Ge(100) Surface. Journal of Physical Chemistry C, 2018, 122, 15352-15358.	1.5	4
36	Atomic and electronic structure of styrene on Ge(100). Surface Science, 2011, 605, 1438-1444.	0.8	3

#	Article	IF	CITATIONS
37	Chemisorption of cis-2-butene-1,4-diol on Si(100): A theoretical investigation. Surface Science, 2012, 606, 1268-1273.	0.8	3
38	Adsorption Structures of Acetic Acid on Ge(100) at High Coverage. Journal of Physical Chemistry C, 2017, 121, 18584-18592.	1.5	3
39	Dissociative adsorption of a multifunctional compound on a semiconductor surface: a theoretical study of the adsorption of hydroxylamine on Ge(100). Physical Chemistry Chemical Physics, 2018, 20, 15335-15343.	1.3	3
40	Reduction of Transition-Metal Columbite-Tantalite as a Highly Efficient Electrocatalyst for Water Splitting. ACS Applied Materials & Splitting. ACS Applied	4.0	3
41	Structure of Pyrrole on Ge(100). Japanese Journal of Applied Physics, 2006, 45, 2148-2150.	0.8	2
42	Structural Properties of Norbornene Monolayers on Ge(100). Journal of Physical Chemistry C, 2009, 113, 14311-14315.	1.5	2
43	Functionalization of Ge(1 0 0) surface by adsorption of phenylthiol. Applied Surface Science, 2018, 456, 908-914.	3.1	2
44	Competing Reactions of Vinyl and Hydroxyl Groups of Vinyl Alcohol on Ge(100): Effects of Vinyl Substituent on Dissociative Adsorption. Journal of Physical Chemistry C, 2018, 122, 17319-17327.	1.5	1
45	Temperature Dependence of the Reaction HCl + OH → Cl + H2O between 140 and 1 Chemical Society, 2019, 40, 93-101.	l Q0 K. 1.0	. Bulletin of
46	Density Functional Theory Calculations of the Adsorption of Cytosine on Si(100). Bulletin of the Korean Chemical Society, 2020, 41, 1060-1067.	1.0	1
47	Nitrogen Atom Abstraction of Nitrogen Chemisorbed on $W(100)$ Surface. Bulletin of the Korean Chemical Society, 2018, 39, 231-238.	1.0	O
48	Theoretical study of ethyl alcohol adsorbed on a germanium (100) surface. Bulletin of the Korean Chemical Society, 2021, 42, 1585.	1.0	0