Alexandra Stolzing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3820365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mechanisms of Ageing and Development, 2008, 129, 163-173.	2.2	1,031
2	Aging of mesenchymal stem cells. Ageing Research Reviews, 2006, 5, 91-116.	5.0	548
3	The Role of DNA Methylation in Aging, Rejuvenation, and Age-Related Disease. Rejuvenation Research, 2012, 15, 483-494.	0.9	307
4	Systematic Review of miRNA as Biomarkers in Alzheimer's Disease. Molecular Neurobiology, 2019, 56, 6156-6167.	1.9	234
5	The role of lipid metabolism in aging, lifespan regulation, and ageâ€related disease. Aging Cell, 2019, 18, e13048.	3.0	227
6	Age-related impairment of mesenchymal progenitor cell function. Aging Cell, 2006, 5, 213-224.	3.0	204
7	Role of immune cells in the removal of deleterious senescent cells. Immunity and Ageing, 2020, 17, 16.	1.8	187
8	Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains. Neurobiology of Aging, 2006, 27, 54-66.	1.5	184
9	Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. Journal of Translational Medicine, 2011, 9, 10.	1.8	178
10	Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochemical Journal, 2006, 400, 511-520.	1.7	154
11	Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Research Reviews, 2018, 43, 17-25.	5.0	151
12	Glucose-Induced Replicative Senescence in Mesenchymal Stem Cells. Rejuvenation Research, 2006, 9, 31-35.	0.9	130
13	H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. Genome Research, 2015, 25, 27-40.	2.4	119
14	Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity?. Regenerative Medicine, 2020, 15, 1463-1491.	0.8	118
15	Biomarkers to identify and isolate senescent cells. Ageing Research Reviews, 2016, 29, 1-12.	5.0	115
16	Intranasal Delivery of Bone Marrow-Derived Mesenchymal Stem Cells, Macrophages, and Microglia to the Brain in Mouse Models of Alzheimer's and Parkinson's Disease. Cell Transplantation, 2014, 23, 123-139.	1.2	114
17	Diabetes Induced Changes in Rat Mesenchymal Stem Cells. Cells Tissues Organs, 2010, 191, 453-465.	1.3	113
18	Neuronal apoptotic bodies: phagocytosis and degradation by primary microglial cells. FASEB Journal, 2004, 18, 743-745.	0.2	94

ALEXANDRA STOLZING

#	Article	IF	CITATIONS
19	Hydroxyethylstarch in cryopreservation – Mechanisms, benefits and problems. Transfusion and Apheresis Science, 2012, 46, 137-147.	0.5	92
20	Effect of systemic transplantation of bone marrowâ€derived mesenchymal stem cells on neuropathology markers in <scp>APP</scp> / <scp>PS</scp> 1 Alzheimer mice. Neuropathology and Applied Neurobiology, 2017, 43, 299-314.	1.8	83
21	The aging signature: a hallmark of induced pluripotent stem cells?. Aging Cell, 2014, 13, 2-7.	3.0	77
22	Proteolysis, caloric restriction and aging. Mechanisms of Ageing and Development, 2001, 122, 595-615.	2.2	72
23	The consequences of acute cold exposure on protein oxidation and proteasome activity in short-tailed field voles, microtus agrestis. Free Radical Biology and Medicine, 2002, 33, 259-265.	1.3	71
24	Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnology, 2012, 12, 49.	1.7	68
25	Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells. Free Radical Biology and Medicine, 2006, 41, 326-338.	1.3	62
26	Detection and Quantification of β-Amyloid, Pyroglutamyl Aβ, and Tau in Aged Canines. Journal of Neuropathology and Experimental Neurology, 2015, 74, 912-923.	0.9	56
27	The proteasome and its function in the ageing process. Clinical and Experimental Dermatology, 2001, 26, 566-572.	0.6	55
28	Migrational changes of mesenchymal stem cells in response to cytokines, growth factors, hypoxia, and aging. Experimental Cell Research, 2015, 338, 97-104.	1.2	55
29	Degradation of glycated bovine serum albumin in microglial cells. Free Radical Biology and Medicine, 2006, 40, 1017-1027.	1.3	52
30	Intranasal Administration of Mesenchymal Stem Cells Ameliorates the Abnormal Dopamine Transmission System and Inflammatory Reaction in the R6/2 Mouse Model of Huntington Disease. Cells, 2019, 8, 595.	1.8	50
31	Stressed Stem Cells: Temperature Response in Aged Mesenchymal Stem Cells. Stem Cells and Development, 2006, 15, 478-487.	1.1	49
32	Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells, 2022, 11, 1017.	1.8	45
33	Suspension Cultures of Bone-Marrow-Derived Mesenchymal Stem Cells: Effects of Donor Age and Glucose Level. Stem Cells and Development, 2012, 21, 2718-2723.	1.1	41
34	Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Cytotherapy, 2016, 18, 523-535.	0.3	35
35	Serum-free process development: improving the yield and consistency of human mesenchymal stromal cell production. Cytotherapy, 2015, 17, 1524-1535.	0.3	34
36	Differentiation of mouse bone marrow derived stem cells toward microglia-like cells. BMC Cell Biology, 2011, 12, 35.	3.0	33

ALEXANDRA STOLZING

#	Article	IF	CITATIONS
37	Tocopherol-mediated modulation of age-related changes in microglial cells: Turnover of extracellular oxidized protein material. Free Radical Biology and Medicine, 2006, 40, 2126-2135.	1.3	31
38	Generation of human induced pluripotent stem cells using non-synthetic mRNA. Stem Cell Research, 2016, 16, 662-672.	0.3	30
39	Distribution pattern following systemic mesenchymal stem cell injection depends on the age of the recipient and neuronal health. Stem Cell Research and Therapy, 2017, 8, 85.	2.4	30
40	Degradation of oxidized extracellular proteins by microglia. Archives of Biochemistry and Biophysics, 2002, 400, 171-179.	1.4	29
41	Methods of Mesenchymal Stem Cell Homing to the Blood–Brain Barrier. Methods in Molecular Biology, 2018, 1842, 81-91.	0.4	27
42	Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Research Reviews, 2021, 70, 101412.	5.0	27
43	Stem cells in degenerative orthopaedic pathologies: effects of aging on therapeutic potential. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 626-636.	2.3	24
44	Antioxidants effectively prevent oxidation-induced protein damage in OLN 93 cells. Archives of Biochemistry and Biophysics, 2004, 421, 54-60.	1.4	23
45	Impairment of protein homeostasis and decline of proteasome activity in microglial cells from adult Wistar rats. Journal of Neuroscience Research, 2003, 71, 264-271.	1.3	22
46	Effect of Age and Diabetes on the Response of Mesenchymal Progenitor Cells to Fibrin Matrices. International Journal of Biomaterials, 2011, 2011, 1-9.	1.1	19
47	Culture on fibrin matrices maintains the colony-forming capacity and osteoblastic differentiation of mesenchymal stem cells. Biomedical Materials (Bristol), 2012, 7, 045015.	1.7	18
48	Regulating aging in adult stem cells with microRNA. Zeitschrift Fur Gerontologie Und Geriatrie, 2013, 46, 629-634.	0.8	18
49	Protein oxidation and the degradation of oxidized proteins in the rat oligodendrocyte cell line OLN 93-antioxidative effect of the intracellular spin trapping agent PBN. Molecular Brain Research, 2004, 122, 126-132.	2.5	17
50	Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch–based cryoprotectants. BMC Biotechnology, 2016, 16, 85.	1.7	17
51	Doxorubicin generates senescent microglia that exhibit altered proteomes, higher levels of cytokine secretion, and a decreased ability to internalize amyloid β. Experimental Cell Research, 2020, 395, 112203.	1.2	17
52	Fusion and Regenerative Therapies: Is Immortality Really Recessive?. Rejuvenation Research, 2007, 10, 571-586.	0.9	15
53	Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. International Journal of Biochemistry and Cell Biology, 2016, 74, 18-32.	1.2	15
54	Multiparameter flow cytometric detection and quantification of senescent cells in vitro. Biogerontology, 2020, 21, 773-786.	2.0	15

ALEXANDRA STOLZING

#	Article	IF	CITATIONS
55	Cellular Therapy Using Microglial Cells. Rejuvenation Research, 2007, 10, 87-100.	0.9	14
56	Bistable Epigenetic States Explain Age-Dependent Decline in Mesenchymal Stem Cell Heterogeneity. Stem Cells, 2017, 35, 694-704.	1.4	14
57	Allogeneic Non-Adherent Bone Marrow Cells Facilitate Hematopoietic Recovery but Do Not Lead to Allogeneic Engraftment. PLoS ONE, 2009, 4, e6157.	1.1	13
58	Biodistribution of inÂvitro–derived microglia applied intranasally and intravenously to mice: effects of aging. Cytotherapy, 2015, 17, 1617-1626.	0.3	13
59	Functional regeneration of tissue engineered skeletal muscle <i>in vitro</i> is dependent on the inclusion of basement membrane proteins. Cytoskeleton, 2019, 76, 371-382.	1.0	12
60	Chronically active: activation of microglial proteolysis in ageing and neurodegeneration. Redox Report, 2005, 10, 207-213.	1.4	11
61	Cryopreservation of Mesenchymal Stem Cells Using Medical Grade Ice Nucleation Inducer. International Journal of Molecular Sciences, 2020, 21, 8579.	1.8	11
62	Efficient and safe correction of hemophilia A by lentiviral vector-transduced BOECs in an implantable device. Molecular Therapy - Methods and Clinical Development, 2021, 23, 551-566.	1.8	11
63	Microglia differentiation using a culture system for the expansion of mice non-adherent bone marrow stem cells. Journal of Inflammation, 2012, 9, 12.	1.5	9
64	Comparison of different cooling rates for fibroblast and keratinocyte cryopreservation. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E354-E364.	1.3	9
65	Protective effects of alpha phenyl-tert-butyl nitrone and ascorbic acid in human adipose derived mesenchymal stem cells from differently aged donors. Aging, 2016, 9, 340-352.	1.4	9
66	Personal Profile: Interview with Alexandra Stolzing, Ph.D Rejuvenation Research, 2011, 14, 347-348.	0.9	8
67	Transplantation of bone marrow derived macrophages reduces markers of neuropathology in an APP/PS1 mouse model. Translational Neurodegeneration, 2019, 8, 33.	3.6	8
68	The cannabinoid receptors agonist WIN55212-2 inhibits macrophageal differentiation and alters expression and phosphorylation of cell cycle control proteins. Cell Communication and Signaling, 2011, 9, 33.	2.7	7
69	Influence of Murine Mesenchymal Stem Cells on Proliferation, Phenotype, Vitality, and Cytotoxicity of Murine Cytokine-Induced Killer Cells in Coculture. PLoS ONE, 2014, 9, e88115.	1.1	6
70	Watch Your Notch: A Link Between Aging and Stem Cell Fate?. Rejuvenation Research, 2004, 7, 9-11.	0.9	5
71	Enhanced co-culture and enrichment of human natural killer cells for the selective clearance of senescent cells. Aging, 2022, 14, 2131-2147.	1.4	1
72	Aging—mechanisms, models, and translation. Zeitschrift Fur Gerontologie Und Geriatrie, 2013, 46, 612-612.	0.8	0

#	Article	IF	CITATIONS
73	Microglia based Alzheimer therapy. Free Radical Biology and Medicine, 2017, 108, S72.	1.3	0
74	Anharmonic acoustic effects during DNA hybridization on an electrochemical quartz crystal resonator. Electrochimica Acta, 2018, 269, 526-533.	2.6	0
75	I22â€Intranasal administration of mesenchymal stem cells ameliorates the abnormal dopamine transmission system and inflammatory reaction in the R6/2 mouse model of huntington disease. , 2018, , .		0