
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/382032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel CARM1–HuR axis involved in muscle differentiation and plasticity misregulated in spinal muscular atrophy. Human Molecular Genetics, 2022, 31, 1453-1470.	1.4	2
2	Combinatorial therapies for rescuing myotonic dystrophy type 1 skeletal muscle defects. Trends in Molecular Medicine, 2022, , .	3.5	4
3	Severe Muscle Deconditioning Triggers Early Extracellular Matrix Remodeling and Resident Stem Cell Differentiation into Adipocytes in Healthy Men. International Journal of Molecular Sciences, 2022, 23, 5489.	1.8	5
4	Pharmacological and exerciseâ€induced activation of AMPK as emerging therapies for myotonic dystrophy type 1 patients. Journal of Physiology, 2022, 600, 3249-3264.	1.3	5
5	Distinct roles for the RNA-binding protein Staufen1 in prostate cancer. BMC Cancer, 2021, 21, 120.	1.1	9
6	Differential regulation of autophagy by STAU1 in alveolar rhabdomyosarcoma and nonâ€ŧransformed skeletal muscle cells. Cellular Oncology (Dordrecht), 2021, 44, 851-870.	2.1	7
7	The multifunctional RNA-binding protein Staufen1: an emerging regulator of oncogenesis through its various roles in key cellular events. Cellular and Molecular Life Sciences, 2021, 78, 7145-7160.	2.4	15
8	Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biology, 2020, 18, 1-14.	1.5	2
9	Overexpression of Staufen1 in DM1 mouse skeletal muscle exacerbates dystrophic and atrophic features. Human Molecular Genetics, 2020, 29, 2185-2199.	1.4	8
10	Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Frontiers in Physiology, 2020, 11, 71.	1.3	32
11	Identification of therapeutics that target eEF1A2 and upregulate utrophin A translation in dystrophic muscles. Nature Communications, 2020, 11, 1990.	5.8	18
12	HDAC6 regulates microtubule stability and clustering of AChRs at neuromuscular junctions. Journal of Cell Biology, 2020, 219, .	2.3	32
13	AChR β-Subunit mRNAs Are Stabilized by HuR in a Mouse Model of Congenital Myasthenic Syndrome With Acetylcholinesterase Deficiency. Frontiers in Molecular Neuroscience, 2020, 13, 568171.	1.4	1
14	Critical Assessment of the <i>mdx</i> Mouse with <i>Ex Vivo</i> Eccentric Contraction of the Diaphragm Muscle. Current Protocols in Mouse Biology, 2018, 8, e49.	1.2	2
15	Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression. FASEB Journal, 2018, 32, 5090-5103.	0.2	19
16	Pharmacological and physiological activation of AMPK improves the spliceopathy in DM1 mouse muscles. Human Molecular Genetics, 2018, 27, 3361-3376.	1.4	24
17	Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy. Journal of Cellular Physiology, 2018, 233, 7057-7070.	2.0	11
18	Muscle-specific microRNA-206 targets multiple components in dystrophic skeletal muscle representing beneficial adaptations. American Journal of Physiology - Cell Physiology, 2017, 312, C209-C221.	2.1	19

#	Article	IF	CITATIONS
19	Novel Roles for Staufen1 in Embryonal and Alveolar Rhabdomyosarcoma via c-myc-dependent and -independent events. Scientific Reports, 2017, 7, 42342.	1.6	14
20	Muscle-specific expression of the RNA-binding protein Staufen1 induces progressive skeletal muscle atrophy via regulation of phosphatase tensin homolog. Human Molecular Genetics, 2017, 26, 1821-1838.	1.4	21
21	Misregulation of calcium-handling proteins promotes hyperactivation of calcineurin–NFAT signaling in skeletal muscle of DM1 mice. Human Molecular Genetics, 2017, 26, 2192-2206.	1.4	27
22	RNA binding protein RALY promotes Protein Arginine Methyltransferase 1 alternatively spliced isoform v2 relative expression and metastatic potential in breast cancer cells. International Journal of Biochemistry and Cell Biology, 2017, 91, 124-135.	1.2	27
23	Chronic 5-Aminoimidazole-4-Carboxamide-1-β-d-Ribofuranoside Treatment Induces Phenotypic Changes in Skeletal Muscle, but Does Not Improve Disease Outcomes in the R6/2 Mouse Model of Huntington's Disease. Frontiers in Neurology, 2017, 8, 516.	1.1	1
24	Staufen1 Regulates Multiple Alternative Splicing Events either Positively or Negatively in DM1 Indicating Its Role as a Disease Modifier. PLoS Genetics, 2016, 12, e1005827.	1.5	37
25	Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients. Molecular Biology of the Cell, 2016, 27, 1728-1739.	0.9	30
26	NAD ⁺ repletion improves muscle function in muscular dystrophy and counters global PARylation. Science Translational Medicine, 2016, 8, 361ra139.	5.8	208
27	Staufen1s role as a splicing factor and a disease modifier in Myotonic Dystrophy Type I. Rare Diseases (Austin, Tex), 2016, 4, e1225644.	1.8	7
28	A novel role for CARM1 in promoting nonsense-mediated mRNA decay: potential implications for spinal muscular atrophy. Nucleic Acids Research, 2016, 44, 2661-2676.	6.5	29
29	Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles. Human Molecular Genetics, 2016, 25, 24-43.	1.4	54
30	Utrophin A is essential in mediating the functional adaptations of mdx mouse muscle following chronic AMPK activation. Human Molecular Genetics, 2015, 24, 1243-1255.	1.4	43
31	Metformin increases peroxisome proliferator-activated receptor γ Co-activator-1α and utrophin a expression in dystrophic skeletal muscle. Muscle and Nerve, 2015, 52, 139-142.	1.0	48
32	HuR Mediates Changes in the Stability of AChR Â-Subunit mRNAs after Skeletal Muscle Denervation. Journal of Neuroscience, 2015, 35, 10949-10962.	1.7	13
33	The RNA-binding protein Staufen1 impairs myogenic differentiation via a c-myc–dependent mechanism. Molecular Biology of the Cell, 2014, 25, 3765-3778.	0.9	30
34	A reduction in the human adenovirus virion size through use of a shortened fibre protein does not enhance muscle transduction following systemic or localised delivery in mice. Virology, 2014, 468-470, 444-453.	1.1	3
35	Converging pathways involving microRNA-206 and the RNA-binding protein KSRP control post-transcriptionally utrophin A expression in skeletal muscle. Nucleic Acids Research, 2014, 42, 3982-3997.	6.5	23
36	The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB Journal, 2014, 28, 548-568.	0.2	68

#	Article	IF	CITATIONS
37	Resveratrol induces expression of the slow, oxidative phenotype in <i>mdx</i> mouse muscle together with enhanced activity of the SIRT1-PGC-11± axis. American Journal of Physiology - Cell Physiology, 2014, 307, C66-C82.	2.1	72
38	AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends in Molecular Medicine, 2013, 19, 614-624.	3.5	44
39	Emerging complexity of the HuD/ELAVI4 gene; implications for neuronal development, function, and dysfunction. Rna, 2013, 19, 1019-1037.	1.6	96
40	Activation of p38 signaling increases utrophin A expression in skeletal muscle via the RNA-binding protein KSRP and inhibition of AU-rich element-mediated mRNA decay: implications for novel DMD therapeutics. Human Molecular Genetics, 2013, 22, 3093-3111.	1.4	36
41	Chronic metformin treatment induces beneficial adaptations in dystrophic skeletal muscle. FASEB Journal, 2013, 27, 939.16.	0.2	0
42	Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. American Journal of Physiology - Cell Physiology, 2012, 302, C110-C121.	2.1	52
43	Characterization of Multiple Exon 1 Variants in Mammalian HuD mRNA and Neuron-Specific Transcriptional Control via Neurogenin 2. Journal of Neuroscience, 2012, 32, 11164-11175.	1.7	11
44	The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing. Journal of Cell Biology, 2012, 196, 699-712.	2.3	104
45	Trans-acting factors governing acetylcholinesterase mRNA metabolism in neurons. Frontiers in Molecular Neuroscience, 2012, 5, 36.	1.4	10
46	Brainâ€derived neurotrophic factor expression is repressed during myogenic differentiation by miRâ€206. Journal of Neurochemistry, 2012, 120, 230-238.	2.1	78
47	Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle. Human Molecular Genetics, 2011, 20, 3478-3493.	1.4	141
48	Chronic AMPK activation induces beneficial phenotypic adaptations in mdx mouse skeletal muscle. FASEB Journal, 2011, 25, 1105.8.	0.2	0
49	Brain-derived Neurotrophic Factor Regulates Satellite Cell Differentiation and Skeltal Muscle Regeneration. Molecular Biology of the Cell, 2010, 21, 2182-2190.	0.9	134
50	Pharmacological activation of PPARÂ/Â stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice. Human Molecular Genetics, 2009, 18, 4640-4649.	1.4	98
51	Molecular events and signalling pathways involved in skeletal muscle disuseâ€induced atrophy and the impact of countermeasures. Journal of Cellular and Molecular Medicine, 2009, 13, 3032-3050.	1.6	73
52	IRES-Mediated Translation of Utrophin A Is Enhanced by Glucocorticoid Treatment in Skeletal Muscle Cells. PLoS ONE, 2008, 3, e2309.	1.1	39
53	The RNA-Binding Protein HuD Binds Acetylcholinesterase mRNA in Neurons and Regulates its Expression after Axotomy. Journal of Neuroscience, 2007, 27, 665-675.	1.7	37
54	Ca ²⁺ /calmodulin-based signalling in the regulation of the muscle fibre phenotype and its therapeutic potential via modulation of utrophin A and myostatin expression. Applied Physiology, Nutrition and Metabolism, 2007, 32, 921-929.	0.9	50

#	Article	IF	CITATIONS
55	Ets-2 Repressor Factor Silences Extrasynaptic Utrophin by N-Box–mediated Repression in Skeletal Muscle. Molecular Biology of the Cell, 2007, 18, 2864-2872.	0.9	21
56	Modulation of utrophin A mRNA stability in fast versus slow muscles via an AU-rich element and calcineurin signaling. Nucleic Acids Research, 2007, 36, 826-838.	6.5	47
57	Activation of PPARδ stimulates utrophin A expression in skeletal muscle cells. FASEB Journal, 2007, 21, A1301.	0.2	1
58	The brainâ€derived neurotrophic factor (BDNF) regulates skeletal muscle regeneration and is misâ€regulated in dystrophic muscle. FASEB Journal, 2007, 21, A1306.	0.2	0
59	BDNF Is Expressed in Skeletal Muscle Satellite Cells and Inhibits Myogenic Differentiation. Journal of Neuroscience, 2006, 26, 5739-5749.	1.7	147
60	Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we?. Trends in Molecular Medicine, 2006, 12, 122-129.	3.5	100
61	In vivo post-transcriptional regulation of GAP-43 mRNA by overexpression of the RNA-binding protein HuD. Journal of Neurochemistry, 2006, 96, 790-801.	2.1	67
62	The RNA-binding protein HuD: a regulator of neuronal differentiation, maintenance and plasticity. BioEssays, 2006, 28, 822-833.	1.2	100
63	Targeted inhibition of Ca2+/calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Human Molecular Genetics, 2006, 15, 1423-1435.	1.4	57
64	Role of ELAV-like RNA-binding proteins HuD and HuR in the post-transcriptional regulation of acetylcholinesterase in neurons and skeletal muscle cells. Chemico-Biological Interactions, 2005, 157-158, 43-49.	1.7	17
65	Calcineurin-NFAT signaling, together with GABP and peroxisome PGC-1α, drives utrophin gene expression at the neuromuscular junction. American Journal of Physiology - Cell Physiology, 2005, 289, C908-C917.	2.1	75
66	The RNA-binding Protein HuR Binds to Acetylcholinesterase Transcripts andRegulates Their Expression in Differentiating Skeletal MuscleCells. Journal of Biological Chemistry, 2005, 280, 25361-25368.	1.6	40
67	The Utrophin A 5â€2-Untranslated Region Confers Internal Ribosome Entry Site-mediated Translational Control during Regeneration of Skeletal Muscle Fibers. Journal of Biological Chemistry, 2005, 280, 32997-33005.	1.6	54
68	A 1.3kb promoter fragment confers spatial and temporal expression of utrophin A mRNA in mouse skeletal muscle fibers. Neuromuscular Disorders, 2005, 15, 437-449.	0.3	18
69	Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies. FASEB Journal, 2005, 19, 880-891.	0.2	116
70	Helper-Dependent Adenoviral Vectors Containing Modified Fiber for Improved Transduction of Developing and Mature Muscle Cells. Human Gene Therapy, 2004, 15, 179-188.	1.4	23
71	Glucocorticoid treatment alleviates dystrophic myofiber pathology by activation of the calcineurin/NFâ€AT pathway. FASEB Journal, 2004, 18, 1937-1939.	0.2	77
72	Use of adenovirus protein IX (pIX) to display large polypeptides on the virion—generation of fluorescent virus through the incorporation of pIX-GFP. Molecular Therapy, 2004, 9, 617-624.	3.7	99

#	Article	IF	CITATIONS
73	Localizing synaptic mRNAs at the neuromuscular junction: It takes more than transcription. BioEssays, 2003, 25, 25-31.	1.2	25
74	Impaired fast axonal transport in neurons of the sciatic nerves from dystonia musculorum mice. Journal of Neurochemistry, 2003, 86, 564-571.	2.1	32
75	Localization of the RNA-binding proteins Staufen1 and Staufen2 at the mammalian neuromuscular junction. Journal of Neurochemistry, 2003, 86, 669-677.	2.1	43
76	Post-transcriptional Regulation of Acetylcholinesterase mRNAs in Nerve Growth Factor-treated PC12 Cells by the RNA-binding Protein HuD. Journal of Biological Chemistry, 2003, 278, 5710-5717.	1.6	59
77	Expression of utrophin A mRNA correlates with the oxidative capacity of skeletal muscle fiber types and is regulated by calcineurin/NFAT signaling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7791-7796.	3.3	118
78	Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice. Human Molecular Genetics, 2003, 13, 379-388.	1.4	112
79	Multiple regulatory events controlling the expression and localization of utrophin in skeletal muscle fibers: insights into a therapeutic strategy for Duchenne muscular dystrophy. Journal of Physiology (Paris), 2002, 96, 31-42.	2.1	28
80	Molecular Mechanisms Underlying the Activity-Linked Alterations in Acetylcholinesterase mRNAs in Developing Versus Adult Rat Skeletal Muscles. Journal of Neurochemistry, 2002, 74, 2250-2258.	2.1	29
81	Expression of mutant Ets protein at the neuromuscular synapse causes alterations in morphology and gene expression. EMBO Reports, 2002, 3, 1075-1081.	2.0	37
82	A Novel Mechanism for Modulating Synaptic Gene Expression: Differential Localization of α-Dystrobrevin Transcripts in Skeletal Muscle. Molecular and Cellular Neurosciences, 2001, 17, 127-140.	1.0	32
83	Increased expression of utrophin in a slow vs. a fast muscle involves posttranscriptional events. American Journal of Physiology - Cell Physiology, 2001, 281, C1300-C1309.	2.1	83
84	Role of Intronic E- and N-box Motifs in the Transcriptional Induction of the Acetylcholinesterase Gene during Myogenic Differentiation. Journal of Biological Chemistry, 2001, 276, 17603-17609.	1.6	42
85	Distinct regions in the 3′ untranslated region are responsible for targeting and stabilizing utrophin transcripts in skeletal muscle cells. Journal of Cell Biology, 2001, 154, 1173-1184.	2.3	50
86	Regulation and functional significance of utrophin expression at the mammalian neuromuscular synapse. , 2000, 49, 90-100.		18
87	Myotubes originating from single fast and slow satellite cells display similar patterns of AChE expression. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R140-R148.	0.9	16
88	Stability and Secretion of Acetylcholinesterase Forms in Skeletal Muscle Cells. Journal of Neuroscience, 1999, 19, 8252-8259.	1.7	13
89	Calcitonin gene-related peptide decreases expression of acetylcholinesterase in mammalian myotubes. FEBS Letters, 1999, 444, 22-26.	1.3	27
90	Discordant Expression of Utrophin and Its Transcript in Human and Mouse Skeletal Muscles. Journal of Neuropathology and Experimental Neurology, 1999, 58, 235-244.	0.9	51

6

#	Article	IF	CITATIONS
91	Polarized sorting of nicotinic acetylcholine receptors to the postsynaptic membrane inTorpedoelectrocyte. European Journal of Neuroscience, 1998, 10, 839-852.	1.2	17
92	Molecular mechanisms and putative signalling events controlling utrophin expression in mammalian skeletal muscle fibres. Neuromuscular Disorders, 1998, 8, 351-361.	0.3	13
93	Nerve-Derived Trophic Factors and DNA Elements Controlling Expression of Genes Encoding Synaptic Proteins in Skeletal Muscle Fibers. Applied Physiology, Nutrition, and Metabolism, 1998, 23, 366-376.	1.7	2
94	Muscle and Neural Isoforms of Agrin Increase Utrophin Expression in Cultured Myotubes via a Transcriptional Regulatory Mechanism. Journal of Biological Chemistry, 1998, 273, 736-743.	1.6	85
95	Increased Expression of Acetylcholinesterase T and R Transcripts during Hematopoietic Differentiation Is Accompanied by Parallel Elevations in the Levels of Their Respective Molecular Forms. Journal of Biological Chemistry, 1998, 273, 9727-9733.	1.6	56
96	Acetylcholinesterase Gene Expression in Axotomized Rat Facial Motoneurons Is Differentially Regulated by Neurotrophins: Correlation with trkB and trkC mRNA Levels and Isoforms. Journal of Neuroscience, 1998, 18, 9936-9947.	1.7	57
97	Local Transcriptional Control of Utrophin Expression at the Neuromuscular Synapse. Journal of Biological Chemistry, 1997, 272, 8117-8120.	1.6	72
98	Mechanical stimulation increases expression of acetylcholinesterase in cultured myotubes. American Journal of Physiology - Cell Physiology, 1997, 273, C2002-C2009.	2.1	30
99	Duchenne muscular dystrophy and the neuromuscular junction: The utrophin link. BioEssays, 1997, 19, 747-750.	1.2	16
100	Succinate dehydrogenase activity within synaptic and extrasynaptic compartments of functionally-overloaded rat skeletal muscle fibers. Pflugers Archiv European Journal of Physiology, 1996, 431, 797-799.	1.3	3
101	Nerve-Dependent Plasticity of the Golgi Complex in Skeletal Muscle Fibres: Compartmentalization Within the Subneural Sarcoplasm. European Journal of Neuroscience, 1995, 7, 470-479.	1.2	27
102	Regulation of Dihydropyridine and Ryanodine Receptor Gene Expression in Skeletal Muscle. Journal of Biological Chemistry, 1995, 270, 25837-25844.	1.6	38
103	Direct gene transfer into mouse diaphragm. FEBS Letters, 1993, 333, 146-150.	1.3	36
104	Compartmentalization of acetylcholinesterase mRNA and enzyme at the vertebrate neuromuscular junction. Neuron, 1993, 11, 467-477.	3.8	110
105	Compartmentalization of cold-stable and acetylated microtubules in the subsynaptic domain of chick skeletal muscle fibre. Nature, 1990, 344, 673-675.	13.7	88