xXal Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3820171/publications.pdf

Version: 2024-02-01

279798 330143 2,291 39 23 37 citations h-index g-index papers 43 43 43 3640 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	The protein phosphatase PPM1A dephosphorylates and activates YAP to govern mammalian intestinal and liver regeneration. PLoS Biology, 2021, 19, e3001122.	5.6	13
2	A Wnt-Independent LGR4–EGFR Signaling Axis in Cancer Metastasis. Cancer Research, 2021, 81, 4441-4454.	0.9	11
3	AMBRA1 Promotes $TGF\hat{l}^2$ Signaling via Nonproteolytic Polyubiquitylation of Smad4. Cancer Research, 2021, 81, 5007-5020.	0.9	8
4	ALK phosphorylates SMAD4 on tyrosine to disable TGF-β tumour suppressor functions. Nature Cell Biology, 2019, 21, 179-189.	10.3	41
5	<scp>PTPN</scp> 3 acts as a tumor suppressor and boosts <scp>TGF</scp> â€Î² signaling independent of its phosphatase activity. EMBO Journal, 2019, 38, e99945.	7.8	15
6	SCP4 Promotes Gluconeogenesis Through FoxO1/3a Dephosphorylation. Diabetes, 2018, 67, 46-57.	0.6	19
7	Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. Journal of Clinical Investigation, 2018, 128, 1283-1299.	8.2	163
8	Protein phosphatase 5 and the tumor suppressor p53 down-regulate each other's activities in mice. Journal of Biological Chemistry, 2018, 293, 18218-18229.	3.4	14
9	Tumor suppressor bromodomain-containing protein 7 cooperates with Smads to promote transforming growth factor- \hat{l}^2 responses. Oncogene, 2017, 36, 362-372.	5.9	19
10	The nuclear phosphatase SCP4 regulates FoxOÂtranscription factors during muscle wastingÂin chronic kidney disease. Kidney International, 2017, 92, 336-348.	5.2	16
11	Smad7 enables STAT3 activation and promotes pluripotency independent of TGF- \hat{l}^2 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10113-10118.	7.1	48
12	Palmitoylated SCP1 is targeted to the plasma membrane and negatively regulates angiogenesis. ELife, 2017, 6, .	6.0	15
13	The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation. Journal of Biological Chemistry, 2016, 291, 11518-11528.	3.4	25
14	SUMO Modification Reverses Inhibitory Effects of Smad Nuclear Interacting Protein-1 in TGF- \hat{l}^2 Responses. Journal of Biological Chemistry, 2016, 291, 24418-24430.	3.4	25
15	Posttranslational Regulation of Smads. Cold Spring Harbor Perspectives in Biology, 2016, 8, a022087.	5.5	73
16	PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1. Science Advances, 2016, 2, e1501889.	10.3	55
17	Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor- \hat{l}^2 (TGF- \hat{l}^2)/Smad Signaling. Journal of Biological Chemistry, 2016, 291, 382-392.	3.4	144
18	Analysis of Smad Phosphatase Activity In Vitro. Methods in Molecular Biology, 2016, 1344, 111-119.	0.9	5

#	Article	IF	CITATIONS
19	Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation. Molecular and Cellular Biology, 2015, 35, 1700-1711.	2.3	37
20	Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nature Cell Biology, 2015, 17, 434-444.	10.3	128
21	SCP Phosphatases Suppress Renal Cell Carcinoma by Stabilizing PML and Inhibiting mTOR/HIF Signaling. Cancer Research, 2014, 74, 6935-6946.	0.9	29
22	Specific control of BMP signaling and mesenchymal differentiation by cytoplasmic phosphatase PPM1H. Cell Research, 2014, 24, 727-741.	12.0	29
23	C-terminal Domain (CTD) Small Phosphatase-like 2 Modulates the Canonical Bone Morphogenetic Protein (BMP) Signaling and Mesenchymal Differentiation via Smad Dephosphorylation. Journal of Biological Chemistry, 2014, 289, 26441-26450.	3.4	32
24	Smad3 signaling activates bone marrow-derived fibroblasts in renal fibrosis. Laboratory Investigation, 2014, 94, 545-556.	3.7	35
25	PPM1A dephosphorylates RanBP3 to enable efficient nuclear export of Smad2 and Smad3. EMBO Reports, 2011, 12, 1175-1181.	4.5	24
26	Abstract P113: Protein Tyrosine Phosphatase-Like A Is a Unique Regulator for Myogenesis. Circulation Research, 2011, 109, .	4.5	0
27	PPB is a Novel Serine/Threonine Phosphatase of Akt and is Involved in Myogenesis. FASEB Journal, 2010, 24, 863.2.	0.5	0
28	Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes. Open Access Rheumatology: Research and Reviews, 2009, 1, 151.	1.6	8
29	PPM1A and PPM1B act as IKKβ phosphatases to terminate TNFα-induced IKKβ-NF-κB activation. Cellular Signalling, 2009, 21, 95-102.	3.6	96
30	Nuclear Export of Smad2 and Smad3 by RanBP3 Facilitates Termination of TGF- \hat{l}^2 Signaling. Developmental Cell, 2009, 16, 345-357.	7.0	89
31	Termination of TGF-β Superfamily Signaling Through SMAD Dephosphorylation—A Functional Genomic View. Journal of Genetics and Genomics, 2007, 34, 1-9.	3.9	13
32	PPM1A Functions as a Smad Phosphatase to Terminate TGFβ Signaling. Cell, 2006, 125, 915-928.	28.9	422
33	Small C-terminal Domain Phosphatases Dephosphorylate the Regulatory Linker Regions of Smad2 and Smad3 to Enhance Transforming Growth Factor-Î ² Signaling*. Journal of Biological Chemistry, 2006, 281, 38365-38375.	3.4	90
34	Abrogation of Transforming Growth Factor- \hat{l}^2 Signaling in Pancreatic Cancer. World Journal of Surgery, 2005, 29, 312-316.	1.6	11
35	Design and application of a versatile expression vector for RNAi in mammalian cells. Journal of Rnai and Gene Silencing, 2005, 1, 38-43.	1.2	3
36	Opposed Regulation of Corepressor CtBP by SUMOylation and PDZ Binding. Molecular Cell, 2003, 11, 1389-1396.	9.7	155

#	Article	IF	CITATIONS
37	Activation of Transforming Growth Factor-Î ² Signaling by SUMO-1 Modification of Tumor Suppressor Smad4/DPC4. Journal of Biological Chemistry, 2003, 278, 18714-18719.	3.4	121
38	Smad6 Recruits Transcription Corepressor CtBP To Repress Bone Morphogenetic Protein-Induced Transcription. Molecular and Cellular Biology, 2003, 23, 9081-9093.	2.3	100
39	SUMO-1/Ubc9 Promotes Nuclear Accumulation and Metabolic Stability of Tumor Suppressor Smad4. Journal of Biological Chemistry, 2003, 278, 31043-31048.	3.4	160