
Baishu Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3819933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced CO ₂ Binding Affinity of a High-Uptake <i>rht</i> -Type Metalâ^'Organic Framework Decorated with Acylamide Groups. Journal of the American Chemical Society, 2011, 133, 748-751.	13.7	722
2	High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal–organic frameworks. Chemical Communications, 2012, 48, 7025.	4.1	174
3	Highly selective CO2 capture of an agw-type metal–organic framework with inserted amides: experimental and theoretical studies. Chemical Communications, 2012, 48, 3058.	4.1	166
4	Porous NbO-type metal–organic framework with inserted acylamide groups exhibiting highly selective CO2 capture. CrystEngComm, 2013, 15, 3517.	2.6	99
5	Expanded Porous MOF-505 Analogue Exhibiting Large Hydrogen Storage Capacity and Selective Carbon Dioxide Adsorption. Inorganic Chemistry, 2013, 52, 2823-2829.	4.0	91
6	High-Capacity Gas Storage by a Microporous Oxalamide-Functionalized NbO-Type Metal–Organic Framework. Crystal Growth and Design, 2013, 13, 5001-5006.	3.0	71
7	Water Stable Metal–Organic Framework Evolutionally Formed from a Flexible Multidentate Ligand with Acylamide Groups for Selective CO ₂ Adsorption. Crystal Growth and Design, 2012, 12, 1081-1084.	3.0	67
8	Functional Two-Dimensional Coordination Polymer Exhibiting Luminescence Detection of Nitroaromatics. Crystal Growth and Design, 2019, 19, 1172-1182.	3.0	64
9	Design of Binary Cu–Fe Sites Coordinated with Nitrogen Dispersed in the Porous Carbon for Synergistic CO ₂ Electroreduction. Small, 2021, 17, e2006951.	10.0	63
10	An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.	6.0	62
11	Controlling the shifting degree of interpenetrated metal–organic frameworks by modulator and temperature and their hydrogen adsorption properties. Chemical Communications, 2011, 47, 2556.	4.1	56
12	Fe Single Atoms and Fe ₂ O ₃ Clusters Liberated from N-Doped Polyhedral Carbon for Chemoselective Hydrogenation under Mild Conditions. ACS Applied Materials & Interfaces, 2020, 12, 34122-34129.	8.0	47
13	A highly porous rht-type acylamide-functionalized metal–organic framework exhibiting large CO ₂ uptake capabilities. Chemical Communications, 2016, 52, 12988-12991.	4.1	44
14	Fe/Fe ₂ O ₃ @Nâ€dopped Porous Carbon: A Highâ€Performance Catalyst for Selective Hydrogenation of Nitro Compounds. ChemCatChem, 2019, 11, 724-728.	3.7	41
15	A highly porous acylamide decorated MOF-505 analogue exhibiting high and selective CO ₂ gas uptake capability. CrystEngComm, 2018, 20, 1874-1881.	2.6	40
16	A new type of halogen bond involving multivalent astatine: an <i>ab initio</i> study. Physical Chemistry Chemical Physics, 2019, 21, 15310-15318.	2.8	39
17	A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation. Nano Research, 2021, 14, 546-553.	10.4	39
18	Enhanced water stability of a microporous acylamide-functionalized metal–organic framework via interpenetration and methyl decoration. CrystEngComm, 2014, 16, 9586-9589.	2.6	35

BAISHU ZHENG

#	Article	IF	CITATIONS
19	A highly porous 4,4-paddlewheel-connected NbO-type metal–organic framework with a large gas-uptake capacity. Dalton Transactions, 2013, 42, 11304.	3.3	34
20	A highly porous agw-type metal–organic framework and its CO2 and H2 adsorption capacity. CrystEngComm, 2013, 15, 9348.	2.6	32
21	Metal-dependent dimensionality in coordination polymers of a semi-rigid dicarboxylate ligand with additional amide groups: Syntheses, structures and luminescent properties. Inorganica Chimica Acta, 2010, 363, 3172-3177.	2.4	31
22	Highly Selective Carbon Dioxide Capture and Cooperative Catalysis of a Waterâ€Stable Acylamideâ€Functionalized Metal–Organic Framework. European Journal of Inorganic Chemistry, 2018, 2018, 1309-1314.	2.0	30
23	Solvent- and pH-Dependent Formation of Four Zinc Porous Coordination Polymers: Framework Isomerism and Gas Separation. Crystal Growth and Design, 2018, 18, 7674-7682.	3.0	27
24	A theoretical investigation on Cu/Ag/Au bonding in XH2Pâ<⁻MY(X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F,) Tj	ETJOq0 0 () rgBT /Over
25	Nitrogen-Rich Porous Carbon-Stabilized Ni–Co Nanoparticles for the Hydrogenation of Quinolines. ACS Applied Nano Materials, 2019, 2, 6763-6768.	5.0	27
26	High Selectivity of Hydrogenation Reaction over Co _{0.15} @C/PC Catalyst at Room Temperature. Inorganic Chemistry, 2019, 58, 6137-6142.	4.0	24
27	Highly efficient CO ₂ capture and conversion of a microporous acylamide functionalized <i>rht</i> -type metal–organic framework. Inorganic Chemistry Frontiers, 2020, 7, 1939-1948.	6.0	24
28	Regium bonds formed by MX (Mâ•€u, Ag, Au; Xâ•F, Cl, Br) with phosphine-oxide/phosphinous acid: comparisons between oxygen-shared and phosphine-shared complexes. Molecular Physics, 2019, 117, 2443-2455.	1.7	23
29	Large-Scale Structural Refinement and Screening of Zirconium Metal–Organic Frameworks for H ₂ S/CH ₄ Separation. ACS Applied Materials & Interfaces, 2019, 11, 46984-46992.	8.0	22
30	Co Nanoparticles Encapsulated in Nitrogen Doped Carbon Tubes for Efficient Hydrogenation of Quinoline under Mild Conditions. ChemCatChem, 2020, 12, 129-134.	3.7	22
31	Highly selective carbon dioxide uptake by a microporous kgm-pillared metal–organic framework with acylamide groups. CrystEngComm, 2014, 16, 5520.	2.6	21
32	Formation of a metal–organic framework with high gas uptakes based upon amino-decorated polyhedral cages. RSC Advances, 2015, 5, 2374-2377.	3.6	20
33	Cu Nanoclusters Anchored on the Metal–Organic Framework for the Hydrolysis of Ammonia Borane and the Reduction of Quinolines. Inorganic Chemistry, 2021, 60, 12906-12911.	4.0	18
34	Temperature-induced structural transformations accompanied by changes in magnetic properties of two copper coordination polymers. CrystEngComm, 2020, 22, 3482-3488.	2.6	17
35	Cooperative effects between F … Ag bonded and X … Br (Cl) halogen-bonded interaction in BrF(ClF) … AgX … BrF(ClF) (X = F, Cl, Br) complexes: a theoretical study. Moleculai 1834-1843.	Playsics, 1	20 & 8, 116,
36	Ni@PC as a stabilized catalyst toward the efficient hydrogenation of quinoline at ambient temperature. Catalysis Science and Technology, 2019, 9, 6669-6672.	4.1	15

BAISHU ZHENG

#	Article	IF	CITATIONS
37	Anion Regulates scu Topological Porous Coordination Polymers into the Acetylene Trap. ACS Applied Materials & Interfaces, 2022, 14, 13550-13559.	8.0	14
38	Halogen bonds and metal bonds involving superalkalies M2OCN/M2NCO (M = Li, Na) complexes. Structural Chemistry, 2019, 30, 965-977.	2.0	13
39	Optimized nanospace of coordination isomers with selenium sites for acetylene separation. Inorganic Chemistry Frontiers, 2020, 7, 3195-3203.	6.0	12
40	Molecular Sieving of C ₂ H ₄ from C ₂ H ₂ by a Supramolecular Porous Material. Energy & Fuels, 2020, 34, 11315-11321.	5.1	10
41	Identifying Promising Covalent-Organic Frameworks for Decarburization and Desulfurization from Biogas via Computational Screening. ACS Sustainable Chemistry and Engineering, 2021, 9, 8858-8867.	6.7	10
42	Encapsulating Cobalt into N-Doping Hollow Frameworks for Efficient Cascade Catalysis. Inorganic Chemistry, 2021, 60, 9757-9761.	4.0	10
43	Highly Efficient and Chemoselective Hydrogenation of Nitro Compounds into Amines by Nitrogen-Doped Porous Carbon-Supported Co/Ni Bimetallic Nanoparticles. Inorganic Chemistry, 2021, 60, 16834-16839.	4.0	10
44	Comparison of halide donators based on pi···M (M = Cu, Ag, Au), pi···H and pi···halogen bonc Chemistry Accounts, 2018, 137, 1.	ls. Theore 1.4	ticąl
45	Probing the halogen bond donation ability of multivalent At-center in AtXn (XÂ=ÂCl, Br, I; nÂ=Â1, 3,) Tj ETQq1 1).784314 2.5	rg&T /Over
46	Nano-Ni-MOFs: High Active Catalysts on the Cascade Hydrogenation of Quinolines. Catalysis Letters, 2021, 151, 2445-2451.	2.6	8
47	Probing Au⋯O and Au⋯P regium bonding interaction in AuX (XÂ=ÂF, Cl, Br)⋯RPHOH (RÂ=ÂCH3, F, CF3, NH2, complexes. Computational and Theoretical Chemistry, 2020, 1179, 112800.	CN) 2.5	7
48	Cooperativity effects between regium-bonding and pnicogen-bonding interactions in ternary MF···PH3O···MF (M = Cu, Ag, Au): an ab initio study. Molecular Physics, 2020, 118, .	1.7	7
49	Honeycomb-like 2D metal-organic polyhedral framework exhibiting selectively adsorption of CO2. Journal of Solid State Chemistry, 2021, 300, 122230.	2.9	5
50	Identifying promising covalent organic frameworks for HCHO/O2Â+ÂN2 adsorption from indoor air pollution using high-throughput computational screening. Computational and Theoretical Chemistry, 2022, 1210, 113655.	2.5	5
51	NMR and theoretical study on the coordination interactions between peroxovanadium(V) complex and bisubstituted pyridine ligands. Journal of Coordination Chemistry, 2013, 66, 2558-2566.	2.2	4
52	A porous amide-functionalized <i>pto</i> -type MOF exhibiting selective capture and separation of cationic MB dye. Journal of Coordination Chemistry, 2021, 74, 241-251.	2.2	3
53	A study on the interaction between 3â€spiroâ€piperidones and bovine serum albumin using spectroscopic approaches. Luminescence, 2013, 28, 705-712.	2.9	2
54	A Podâ€like Coreâ€Shell Catalyst with High Reduction Performance Under Mild Conditions. European Journal of Inorganic Chemistry, 0, , e202100996.	2.0	1