Christopher Y H Chao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3819669/publications.pdf

Version: 2024-02-01

205 papers 11,018 citations

54 h-index 98 g-index

212 all docs 212 docs citations

times ranked

212

9286 citing authors

#	Article	IF	Citations
1	Energy consumption modelling of a passive hybrid system for office buildings in different climates. Energy, 2022, 239, 121914.	8.8	14
2	Experimental study on the thermal-hydraulic performance of a fluttering split flag in a channel flow. International Journal of Heat and Mass Transfer, 2022, 182, 121945.	4.8	4
3	Statistical analysis of the organized turbulence structure in the inertial and roughness sublayers over real urban area by building-resolved large-eddy simulation. Building and Environment, 2022, 207, 108464.	6.9	12
4	The use of acoustic streaming in Sub-micron particle sorting. Aerosol Science and Technology, 2022, 56, 247-260.	3.1	2
5	A Solutionâ€Processed Inorganic Emitter with High Spectral Selectivity for Efficient Subambient Radiative Cooling in Hot Humid Climates. Advanced Materials, 2022, 34, e2109350.	21.0	62
6	A large-area versatile textile for radiative warming and biomechanical energy harvesting. Nano Energy, 2022, 95, 106996.	16.0	20
7	Airborne infection risk of nearby passengers in a cabin environment and implications for infection control. Travel Medicine and Infectious Disease, 2022, 47, 102285.	3.0	5
8	Development and performance evaluation of a chiller plant predictive operational control strategy by artificial intelligence. Energy and Buildings, 2022, 262, 112017.	6.7	11
9	Infection control measures for public transportation derived from the flow dynamics of obstructed cough jet. Journal of Aerosol Science, 2022, 163, 105995.	3.8	0
10	Hybrid nanofluid spray cooling performance and its residue surface effects: Toward thermal management of high heat flux devices. Applied Thermal Engineering, 2022, 211, 118454.	6.0	18
11	Effects of non-wetting fraction and pitch distance in flow boiling heat transfer in a wettability-patterned microchannel. International Journal of Heat and Mass Transfer, 2022, 190, 122753.	4.8	13
12	The effect of head orientation and personalized ventilation on bioaerosol deposition from a cough. Indoor Air, 2022, 32, .	4.3	3
13	All-weather thermochromic windows for synchronous solar and thermal radiation regulation. Science Advances, 2022, 8, eabn7359.	10.3	70
14	Experimental and numerical study of heat transfer performance of a channel flow with an inverted flag. International Journal of Heat and Mass Transfer, 2022, 193, 122969.	4.8	2
15	Copper-alumina hybrid nanofluid droplet phase change dynamics over heated plain copper and porous residue surfaces. International Journal of Thermal Sciences, 2022, 182, 107795.	4.9	0
16	Performance of airflow distance from personalized ventilation on personal exposure to airborne droplets from different orientations. Indoor and Built Environment, 2021, 30, 1643-1653.	2.8	13
17	Solutionâ€Processed Allâ€Ceramic Plasmonic Metamaterials for Efficient Solar–Thermal Conversion over 100–727Â ° C. Advanced Materials, 2021, 33, e2005074.	21.0	76
18	Holey aligned electrodes through in-situ ZIF-8-assisted-etching for high-performance aqueous redox flow batteries. Science Bulletin, 2021, 66, 904-913.	9.0	32

#	Article	IF	Citations
19	Short-range bioaerosol deposition and recovery of viable viruses and bacteria on surfaces from a cough and implications for respiratory disease transmission. Aerosol Science and Technology, 2021, 55, 215-230.	3.1	18
20	Short-range bioaerosol deposition and inhalation of cough droplets and performance of personalized ventilation. Aerosol Science and Technology, 2021, 55, 474-485.	3.1	19
21	Solar-assisted icephobicity down to â^'60°C with superhydrophobic selective surfaces. Cell Reports Physical Science, 2021, 2, 100384.	5.6	43
22	Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. ChemSusChem, 2021, 14, 4103-4114.	6.8	34
23	Respiratory bioaerosol deposition from a cough and recovery of viable viruses on nearby seats in a cabin environment. Indoor Air, 2021, 31, 1913-1925.	4.3	10
24	Corrected radiative cooling power measured by equivalent dissipative thermal reservoir method. International Journal of Heat and Mass Transfer, 2021, 174, 121341.	4.8	7
25	Experimental study of particle deposition on patterned microstructured surfaces in a chamber environment. Journal of Aerosol Science, 2021, 157, 105802.	3.8	7
26	Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. ChemSusChem, 2021, 14, 3981-3981.	6.8	8
27	Boosting power output of flutter-driven triboelectric nanogenerator by flexible flagpole. Nano Energy, 2021, 88, 106284.	16.0	24
28	Effective R-value approach to comprehend the essence of integrated opaque passive substrate properties. Journal of Building Engineering, 2021, 44, 102865.	3.4	3
29	Droplet evaporation and boiling for different mixing ratios of the silver-graphene hybrid nanofluid over heated surfaces. International Journal of Heat and Mass Transfer, 2021, 180, 121786.	4.8	14
30	Thermo-radiative energy conversion efficiency of a passive radiative fluid cooling system. Renewable Energy, 2021, 180, 700-711.	8.9	7
31	Droplet Evaporation of Cu–Al2O3 Hybrid Nanofluid Over Its Residue and Copper Surfaces: Toward Developing a New Analytical Model. Journal of Heat Transfer, 2021, 143, .	2.1	3
32	Enhancement of submicron particle deposition on a semi-circular surface in turbulent flow. Indoor and Built Environment, 2020, 29, 101-116.	2.8	9
33	Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate. Renewable Energy, 2020, 146, 44-55.	8.9	97
34	Droplet detachment behavior from a rough hydrophilic surface. Journal of Aerosol Science, 2020, 139, 105469.	3.8	5
35	Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries. Applied Energy, 2020, 259, 114198.	10.1	45
36	Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Solar Energy Materials and Solar Cells, 2020, 206, 110296.	6.2	115

#	Article	IF	Citations
37	Bio-inspired cooling technologies and the applications in buildings. Energy and Buildings, 2020, 225, 110313.	6.7	34
38	Bio-inspired TiO2 nano-cone antireflection layer for the optical performance improvement of VO2 thermochromic smart windows. Scientific Reports, 2020, 10, 11376.	3.3	18
39	Bio-inspired patterned surface for submicron particle deposition in a fully developed turbulent duct. Building Simulation, 2020, 13, 1111-1123.	5.6	2
40	Investigation of particle deposition on a micropatterned surface as an energy-efficient air cleaning technique in ventilation ducting systems. Aerosol Science and Technology, 2020, 54, 1210-1222.	3.1	5
41	Aligned hierarchical electrodes for high-performance aqueous redox flow battery. Applied Energy, 2020, 271, 115235.	10.1	28
42	A novel electrode formed with electrospun nano- and micro-scale carbon fibers for aqueous redox flow batteries. Journal of Power Sources, 2020, 470, 228441.	7.8	23
43	Rapid thermal annealing assisted facile solution method for tungsten-doped vanadium dioxide thin films on glass substrate. Journal of Alloys and Compounds, 2020, 833, 155053.	5. 5	26
44	Evaporation and wetting behavior of silver-graphene hybrid nanofluid droplet on its porous residue surface for various mixing ratios. International Journal of Heat and Mass Transfer, 2020, 153, 119618.	4.8	31
45	Study of Coalescence-Induced Jumping Droplets on Biphilic Nanostructured Surfaces for Thermal Diodes in Thermal Energy Storage Systems. , 2020, , .		2
46	Perovskite thermochromic smart window: Advanced optical properties and low transition temperature. Applied Energy, 2019, 254, 113690.	10.1	86
47	A theoretical model for the effective thermal conductivity of graphene coated metal foams. Applied Thermal Engineering, 2019, 161, 114112.	6.0	16
48	Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy, 2019, 64, 103947.	16.0	62
49	Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system. Energy and Buildings, 2019, 201, 202-215.	6.7	120
50	Study of particle resuspension from dusty surfaces using a centrifugal method. Indoor Air, 2019, 29, 791-802.	4.3	6
51	Experimental and theoretical study of a water-vapor chamber thermal diode. International Journal of Heat and Mass Transfer, 2019, 138, 173-183.	4.8	26
52	Ultrafine particle emissions from a smouldering cigarette in a residence and its associated lung cancer risk. Indoor and Built Environment, 2019, 28, 1396-1405.	2.8	3
53	A phase-change thermal diode using electrostatic-induced coalescing-jumping droplets. International Journal of Heat and Mass Transfer, 2019, 135, 294-304.	4.8	37
54	Experimental and numerical investigation of submicron particle deposition enhancement by patterned surface. IOP Conference Series: Materials Science and Engineering, 2019, 609, 042018.	0.6	0

#	Article	IF	CITATIONS
55	Electrostatic-induced coalescing-jumping droplets on nanostructured superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 2019, 128, 550-561.	4.8	19
56	On trade-off for dispersion stability and thermal transport of Cu-Al2O3 hybrid nanofluid for various mixing ratios. International Journal of Heat and Mass Transfer, 2019, 132, 1200-1216.	4.8	66
57	Dataset on critical parameters of dispersion stability of Cu/Al2O3 nanofluid and hybrid nanofluid for various ultra-sonication times. Data in Brief, 2019, 22, 863-865.	1.0	14
58	Experimental Investigation on Silver-Graphene Hybrid Nanofluid Droplet Evaporation and Wetting Characteristics of its Nanostructured Droplet Residue. , 2019, , .		1
59	Techno-economic analysis on frosting/defrosting operations for an air source heat pump unit with an optimized multi-circuit outdoor coil. Energy and Buildings, 2018, 166, 165-177.	6.7	21
60	Enhancing the performance of a zeolite 13X/CaCl2–water adsorption cooling system by improving adsorber design and operation sequence. Energy and Buildings, 2018, 158, 1368-1378.	6.7	37
61	Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. International Journal of Thermal Sciences, 2018, 124, 23-35.	4.9	191
62	Studies on detachment behavior of micron sized droplets: A comparison between pure fluid and nanofluid. Aerosol Science and Technology, 2018, 52, 69-77.	3.1	5
63	Influence of sinusoidal airflow and airflow distance on human thermal response to a personalized ventilation system. Indoor and Built Environment, 2018, 27, 317-330.	2.8	3
64	Experimental investigation on composite adsorbent – Water pair for a solar-powered adsorption cooling system. Applied Thermal Engineering, 2018, 131, 649-659.	6.0	41
65	Performance investigation of nanostructured composite surfaces for use in adsorption cooling systems with a mass recovery cycle. Science and Technology for the Built Environment, 2018, 24, 1084-1103.	1.7	7
66	A numerical study of daytime passive radiative coolers for space cooling in buildings. Building Simulation, 2018, 11, 1011-1028.	5.6	43
67	Formation of electrodes by self-assembling porous carbon fibers into bundles for vanadium redox flow batteries. Journal of Power Sources, 2018, 405, 106-113.	7.8	54
68	Differential gene expression in Escherichia coli during aerosolization from liquid suspension. Applied Microbiology and Biotechnology, 2018, 102, 6257-6267.	3.6	20
69	Numerical Study on Merging and Interaction of Jet Diffusion Flames. Journal of Heat Transfer, 2018, 140, .	2.1	0
70	Ultra-broadband asymmetric transmission metallic gratings for subtropical passive daytime radiative cooling. Solar Energy Materials and Solar Cells, 2018, 186, 330-339.	6.2	44
71	A field investigation of passive radiative cooling under Hong Kong's climate. Renewable Energy, 2017, 106, 52-61.	8.9	119
72	The effect of aerosol size distribution and concentration on the removal efficiency of an acoustic aerosol removal system. Journal of Aerosol Science, 2017, 104, 79-89.	3.8	19

#	Article	IF	CITATIONS
73	A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine. Renewable Energy, 2017, 113, 329-334.	8.9	65
74	A field investigation of a solar-powered adsorption cooling system under Guangzhou's climate with various numbers of heat exchangers in the adsorbers. Science and Technology for the Built Environment, 2017, 23, 1282-1292.	1.7	6
75	Evaporation of Al ₂ O ₃ -water nanofluids in an externally micro-grooved evaporator. Science and Technology for the Built Environment, 2017, 23, 345-354.	1.7	15
76	Detachment of droplets by air jet impingement. Aerosol Science and Technology, 2017, 51, 467-476.	3.1	8
77	Development of a phase change material (PCM)-based thermal switch. HKIE Transactions, 2017, 24, 107-112.	0.1	10
78	Study of jumping water droplets on superhydrophobic surfaces with electric fields. International Journal of Heat and Mass Transfer, 2017, 115, 672-681.	4.8	33
79	Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 2017, 108, 75-83.	10.0	256
80	Study of residue patterns of aqueous nanofluid droplets with different particle sizes and concentrations on different substrates. International Journal of Heat and Mass Transfer, 2017, 105, 230-236.	4.8	41
81	Study of Electrostatic-Induced Jumping Droplets on Superhydrophobic Surfaces. , 2017, , .		1
82	Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite. Energy, 2016 , 115 , $209-218$.	8.8	151
83	Investigation of Flame Height From Multiple Liquefied Natural Gas Fire. , 2016, , .		2
84	The correlation between acoustic streaming patterns and aerosol removal efficiencies in an acoustic aerosol removal system. Aerosol Science and Technology, 2016, 50, 52-62.	3.1	11
85	Solid-state thermal diode with shape memory alloys. International Journal of Heat and Mass Transfer, 2016, 93, 605-611.	4.8	64
86	Exhaust Heat Powered Adsorption Air Conditioner for Automotive Applications. , 2015, , .		0
87	Study of enthalpy of evaporation, saturated vapor pressure and evaporation rate of aqueous nanofluids. International Journal of Heat and Mass Transfer, 2015, 84, 931-941.	4.8	57
88	Experimental performance analysis on an adsorption cooling system using zeolite 13X/CaCl2 adsorbent with various operation sequences. International Journal of Heat and Mass Transfer, 2015, 85, 343-355.	4.8	57
89	Measurement of properties and performance prediction of the new MWCNT-embedded zeolite 13X/CaCl2 composite adsorbents. International Journal of Heat and Mass Transfer, 2015, 89, 308-319.	4.8	47
90	Experiment verified simulation study of the operating sequences on the performance of adsorption cooling system. Building Simulation, 2015, 8, 255-269.	5.6	10

#	Article	IF	Citations
91	Finite-difference lattice Boltzmann simulation on acoustics-induced particle deposition. Comptes Rendus - Mecanique, 2015, 343, 589-598.	2.1	5
92	Design and fabrication of micro hot-wire flow sensor using 0.35& $\#x03BC$; $\#x03B$		5
93	Simulation Study of the Heat and Mass Recovery on the Performance of Adsorption Cooling Systems. , 2014, , .		0
94	Investigation of Particle Size on Gasification Process for Solid Waste Treatment., 2014,,.		0
95	Effects of Surface Material, Ventilation, and Human Behavior on Indirect Contact Transmission Risk of Respiratory Infection. Risk Analysis, 2014, 34, 818-830.	2.7	24
96	Modeling a solar-powered double bed novel composite adsorbent (silica activated) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 5	42 Td (carbon
97	A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness. International Journal of Heat and Mass Transfer, 2014, 70, 202-214.	4.8	61
98	The Use of Nonlinear Acoustics as an Energy-Efficient Technique for Aerosol Removal. Aerosol Science and Technology, 2014, 48, 907-915.	3.1	25
99	Effect of human movement on airborne disease transmission in an airplane cabin: study using numerical modeling and quantitative risk analysis. BMC Infectious Diseases, 2014, 14, 434.	2.9	46
100	Detachment of Droplets in a Fully Developed Turbulent Channel Flow. Aerosol Science and Technology, 2014, 48, 916-923.	3.1	24
101	Study on the interzonal migration of airborne infectious particles in an isolation ward using benign bacteria. Indoor Air, 2013, 23, 148-161.	4.3	22
102	Comparison of the Resuspension Behavior Between Liquid and Solid Aerosols. Aerosol Science and Technology, 2013, 47, 1239-1247.	3.1	14
103	Indoor aerosols: from personal exposure to risk assessment. Indoor Air, 2013, 23, 462-487.	4.3	347
104	A theoretical model on the effective stagnant thermal conductivity of an adsorbent embedded with a highly thermal conductive material. International Journal of Heat and Mass Transfer, 2013, 65, 863-872.	4.8	13
105	Smart Green Buildings of Tomorrow. Indoor and Built Environment, 2013, 22, 595-597.	2.8	1
106	Modeling a Novel Composite Adsorbent Based Adsorption Chiller Driven by Solar Energy. , 2013, , .		0
107	Improved Thermal Conductivity of 13X/CaCl2 Composite Adsorbent by CNT Embedment., 2013,,.		4
108	Particle Resuspension in a Wall-Bounded Turbulent Flow. Journal of Fluids Engineering, Transactions of the ASME, 2013, 135, .	1.5	16

#	Article	IF	Citations
109	On Detachment of Micron Droplets Using a Centrifugal Method., 2013,,.		O
110	Estimation of the Aerodynamic Sizes of Single Bacterium-Laden Expiratory Aerosols Using Stochastic Modeling with Experimental Validation. Aerosol Science and Technology, 2012, 46, 1-12.	3.1	8
111	Evaluation of the Drag Force on Single-Walled Carbon Nanotubes in Rarefied Gases. Journal of Nanoscience and Nanotechnology, 2012, 12, 2311-2319.	0.9	12
112	Ultrafine Particle Emissions from Cigarette Smouldering, Incense Burning, Vacuum Cleaner Motor Operation and Cooking. Indoor and Built Environment, 2012, 21, 782-796.	2.8	41
113	Calcium Ion-Exchanged Zeolite 13X: Properties Measurement and Potential Usage in Solar Adsorption Cooling Systems. Smart Innovation, Systems and Technologies, 2012, , 569-579.	0.6	1
114	Heat and Mass Transfer Characteristics of a Zeolite 13X/CaCl2 Composite Adsorbent in Adsorption Cooling Systems. , 2012, , .		9
115	Synthesis of Co ₃ O ₄ Nanowire Arrays Supported on Ni Foam for Removal of Volatile Organic Compounds. Journal of Nanoscience and Nanotechnology, 2012, 12, 3563-3566.	0.9	2
116	Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems. International Journal of Refrigeration, 2012, 35, 1626-1638.	3.4	145
117	Performance analysis of a waste heat driven activated carbon based composite adsorbent – Water adsorption chiller using simulation model. International Journal of Heat and Mass Transfer, 2012, 55, 7596-7610.	4.8	64
118	Retrospective analysis of multi-drug resistant tuberculosis outbreak during a flight using computational fluid dynamics and infection risk assessment. Building and Environment, 2012, 47, 50-57.	6.9	15
119	Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems. International Journal of Heat and Mass Transfer, 2012, 55, 3214-3224.	4.8	122
120	Exposure and cancer risk toward cooking-generated ultrafine and coarse particles in Hong Kong homes. HVAC and R Research, 2012, 18, 204-216.	0.6	19
121	Development of New Zeolite 13X/CaCl2 Composite Adsorbent for Air-Conditioning Application. , 2011, , .		0
122	Theoretical analysis of the motion and evaporation of exhaled respiratory droplets of mixed composition. Journal of Aerosol Science, 2011, 42, 1-10.	3.8	73
123	Modality of human expired aerosol size distributions. Journal of Aerosol Science, 2011, 42, 839-851.	3.8	523
124	Expiratory Aerosol Transport and Deposition in Different Indoor Environments: Exposure and Risk Assessment Related to Influenza Transmission. Epidemiology, 2011, 22, S59.	2.7	0
125	Particle Collection Efficiency of a Lens-Liquid Filtration System., 2011,,.		0
126	Use of Risk Assessment and Likelihood Estimation to Analyze Spatial Distribution Pattern of Respiratory Infection Cases. Risk Analysis, 2011, 31, 351-369.	2.7	5

#	Article	IF	Citations
127	Influence of modification method and transition metal type on the physicochemical properties of MCM-41 catalysts and their performances in the catalytic ozonation of toluene. Applied Catalysis B: Environmental, 2011, 107, 245-252.	20.2	45
128	Ultrafine particles, and PM2.5 generated from cooking in homes. Atmospheric Environment, 2011, 45, 6141-6148.	4.1	164
129	Fly-ash products from biomass co-combustion for VOC control. Bioresource Technology, 2010, 101, 1075-1081.	9.6	18
130	Review and comparison between the WellsâÂ \in Â"Riley and dose-response approaches to risk assessment of infectious respiratory diseases. Indoor Air, 2010, 20, 2-16.	4.3	276
131	Removal and Leakage of Environmental Tobacco Smoke from a Model Smoking Room. Journal of Occupational and Environmental Hygiene, 2010, 7, 573-584.	1.0	5
132	Methane emission abatement by Pd-ion-exchanged zeolite 13X with ozone. Energy and Environmental Science, 2010, 3, 1092.	30.8	15
133	Catalytic Combustion of Methane with Ozone Using Pd-Exchanged Zeolite X: Experimental Investigation and Kinetics Model. Combustion Science and Technology, 2010, 182, 1429-1445.	2.3	9
134	Recycling Biomass Co-Combustion Fly-Ash Products for an Integrated Solar-Assisted Ventilation System., 2009, , .		0
135	Experimental Study of Dispersion and Deposition of Expiratory Aerosols in Aircraft Cabins and Impact on Infectious Disease Transmission. Aerosol Science and Technology, 2009, 43, 466-485.	3.1	91
136	Modeling the Fate of Expiratory Aerosols and the Associated Infection Risk in an Aircraft Cabin Environment. Aerosol Science and Technology, 2009, 43, 322-343.	3.1	99
137	Personalized ventilation as a control measure for airborne transmissible disease spread. Journal of the Royal Society Interface, 2009, 6, S715-26.	3.4	92
138	Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science, 2009, 40, 122-133.	3.8	778
139	Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science, 2009, 40, 256-269.	3.8	848
140	Use of multi-transition-metal-ion-exchanged zeolite 13X catalysts in methane emissions abatement. Combustion and Flame, 2008, 153, 119-129.	5.2	10
141	Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions. Bioresource Technology, 2008, 99, 83-93.	9.6	86
142	Study of a micro absorption heat pump system. International Journal of Refrigeration, 2008, 31, 1198-1206.	3.4	11
143	A methodology for estimating airborne virus exposures in indoor environments using the spatial distribution of expiratory aerosols and virus viability characteristics. Indoor Air, 2008, 18, 425-438.	4.3	65
144	Removal of VOCs from indoor environment by ozonation over different porous materials. Atmospheric Environment, 2008, 42, 2300-2311.	4.1	90

#	Article	IF	Citations
145	Catalytic Ozonation of Toluene Using Zeolite and MCM-41 Materials. Environmental Science & Environment	10.0	84
146	Methane Emissions Abatement by Multi-Ion-Exchanged Zeolite A Prepared from Both Commercial-Grade Zeolite and Coal Fly Ash. Environmental Science & Echnology, 2008, 42, 7392-7397.	10.0	21
147	Development of an Electroosmotic Pump-Driven Micro LiBr Absorption Heat Pump System for Controlling Microclimate in Protective Clothing: Feasibility Review and Role of the Pump. HVAC and R Research, 2008, 14, 467-487.	0.6	1
148	Transport and Removal of Expiratory Droplets in Hospital Ward Environment. Aerosol Science and Technology, 2008, 42, 377-394.	3.1	82
149	Dispersion of Expiratory Droplets in a General Hospital Ward with Ceiling Mixing Type Mechanical Ventilation System. Aerosol Science and Technology, 2007, 41, 244-258.	3.1	85
150	Conversion of Coal Fly Ash Into Zeolite 4A and Its Applications in Waste Water Treatment and Greenhouse Gas Reduction., 2007,, 129.		1
151	Fluid Flow and Heat Transfer Characteristics of Slug Bubbly Flow in Micro Condensers. , 2007, , 769.		0
152	Transport Characteristics of Expiratory Droplets and Droplet Nuclei in Indoor Environments With Different Ventilation Airflow Patterns. Journal of Biomechanical Engineering, 2007, 129, 341-353.	1.3	71
153	Co-Combustion of Coal With Rice Husk and Bamboo in Power Generation. , 2007, , 343.		0
154	Analytical and experimental study of premixed methane–air flame propagation in narrow channels. International Journal of Heat and Mass Transfer, 2007, 50, 1302-1313.	4.8	34
155	Numerical study of electroosmotic (EO) flow in microfabricated EO pump with overlapped electrical double layer (EDL). International Journal of Refrigeration, 2007, 30, 290-298.	3.4	11
156	An experimental study of the fluid flow and heat transfer characteristics in micro-condensers with slug-bubbly flow. International Journal of Refrigeration, 2007, 30, 1309-1318.	3.4	31
157	Potential use of a combined ozone and zeolite system for gaseous toluene elimination. Journal of Hazardous Materials, 2007, 143, 118-127.	12.4	62
158	Role of ventilation in airborne transmission of infectious agents in the built environment? a multidisciplinary systematic review. Indoor Air, 2007, 17, 2-18.	4.3	822
159	Co-combustion performance of coal with rice husks and bamboo. Atmospheric Environment, 2007, 41, 7462-7472.	4.1	62
160	A study of the performance of microfabricated electroosmotic pump. Sensors and Actuators A: Physical, 2007, 135, 273-282.	4.1	16
161	Performance of Transition Metal Ions Exchanged Zeolite $13\mathrm{X}$ in Greenhouse Gas Reduction. , 2007 , , .		0
162	Performance of Underfloor Air Distribution in a Field Setting. International Journal of Ventilation, 2006, 5, 291-300.	0.4	7

#	Article	IF	CITATIONS
163	A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach. Indoor Air, 2006, 16, 296-312.	4.3	106
164	Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash. Microporous and Mesoporous Materials, 2006, 88, 145-151.	4.4	95
165	Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents. Journal of Hazardous Materials, 2006, 137, 401-409.	12.4	75
166	Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH. Journal of Hazardous Materials, 2006, 137, 1135-1148.	12.4	128
167	Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials, 2005, 127, 89-101.	12.4	594
168	Numerical and experimental study of velocity and temperature characteristics in a ventilated enclosure with underfloor ventilation systems. Indoor Air, 2005, 15, 342-355.	4.3	46
169	Development of an Enthalpy and Carbon Dioxide Based Demand Control Ventilation for Indoor Air Quality and Energy Saving with Neural Network Control. Indoor and Built Environment, 2004, 13, 463-475.	2.8	14
170	Experimental study of ventilation performance and contaminant distribution of underfloor ventilation systems vs. traditional ceiling-based ventilation system. Indoor Air, 2004, 14, 306-316.	4.3	9
171	Airflow and air temperature distribution in the occupied region of an underfloor ventilation system. Building and Environment, 2004, 39, 749-762.	6.9	32
172	Effects of fuel properties on the combustion behavior of different types of porous beds soaked with combustible liquid. International Journal of Heat and Mass Transfer, 2004, 47, 5201-5210.	4.8	19
173	Development of a dual-mode demand control ventilation strategy for indoor air quality control and energy saving. Building and Environment, 2004, 39, 385-397.	6.9	97
174	Ventilation performance measurement using constant concentration dosing strategy. Building and Environment, 2004, 39, 1277-1288.	6.9	40
175	Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residences. Atmospheric Environment, 2003, 37, 4233-4241.	4.1	119
176	Confined catalytic oxidation of volatile organic compounds by transition metal containing zeolites and ionizer. Atmospheric Environment, 2003, 37, 5433-5437.	4.1	17
177	Experimental study and asymptotic analysis of horizontally forced forward smoldering combustion. Combustion and Flame, 2003, 135, 405-419.	5.2	26
178	Source Apportionment of Indoor PM _{2.5} and PM ₁₀ in Homes. Indoor and Built Environment, 2002, 11, 27-37.	2.8	5
179	Burning Characteristics of Non-Spread Diffusion Flames of Liquid Fuel Soaked in Porous Beds. Journal of Fire Sciences, 2002, 20, 203-225.	2.0	11
180	Forced Forward Smoldering Propagation in Horizontally Oriented Flexible Polyurethane Foam. Journal of Fire Sciences, 2002, 20, 113-131.	2.0	12

#	Article	IF	Citations
181	Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmospheric Environment, 2002, 36, 265-277.	4.1	191
182	Behavior of non-spread diffusion flames of combustible liquid soaked in porous beds. Proceedings of the Combustion Institute, 2002, 29, 251-257.	3.9	12
183	Effects of preheating and operation conditions on combustion in a porous medium. International Journal of Heat and Mass Transfer, 2002, 45, 4315-4324.	4.8	31
184	Experimental Study of Thermal Comfort in an Office Environment with an Underfloor Ventilation System. Indoor and Built Environment, 2002, 11, 250-265.	2.8	2
185	Size Distribution of Indoor Particulate Matter in 60 Homes in Hong Kong. Indoor and Built Environment, 2002, 11, 18-26.	2.8	1
186	Quantification of Polycyclic Aromatic Hydrocarbons and Aliphatic Hydrocarbons in Air Particulate Samples in Homes. Indoor and Built Environment, 2002, 11, 123-133.	2.8	0
187	Quantification of Indoor TVOC Levels from Different Sources in Mechanically Ventilated Buildings. Indoor and Built Environment, 2002, 11, 340-350.	2.8	O
188	Comparison of the Thermal Decomposition Behavior of a Non-Fire Retarded and a Fire Retarded Flexible Polyurethane Foam with Phosphorus and Brominated Additives. Journal of Fire Sciences, 2001, 19, 137-156.	2.0	52
189	Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Building and Environment, 2001, 36, 999-1007.	6.9	55
190	Transition from smoldering to flaming combustion of horizontally oriented flexible polyurethane foam with natural convection. Combustion and Flame, 2001, 127, 2252-2264.	5.2	57
191	An empirical model for outdoor contaminant transmission into residential buildings and experimental verification. Atmospheric Environment, 2001, 35, 1585-1596.	4.1	50
192	Quantification of indoor VOCs in twenty mechanically ventilated buildings in Hong Kong. Atmospheric Environment, 2001, 35, 5895-5913.	4.1	71
193	A study of personal exposure to nitrogen dioxide using passive samplers. Building and Environment, 2000, 35, 545-553.	6.9	26
194	Study of Indoor Radon Levels in High-Rise Air-Conditioned Office Buildings. Journal of Occupational and Environmental Hygiene, 1999, 14, 811-818.	0.4	3
195	Flame Spread Over Solid Surface Coated with a Layer of Noncombustible Porous Material. Journal of Fire Sciences, 1999, 17, 307-328.	2.0	2
196	A methodology to investigate the particulate penetration coefficient through building shell. Atmospheric Environment, 1999, 33, 881-893.	4.1	66
197	RADON EMANATION OF BUILDING MATERIAL—IMPACE OF BACK DIFFUSION AND DIFFERENCE BETWEEN ONE-DIMENSIONAL AND THREE-DIMENSIONAL TESTS. Health Physics, 1999, 76, 675-681.	0.5	25
198	A territory wide survey on indoor particulate level in Hong Kong. Building and Environment, 1998, 34, 213-220.	6.9	19

#	Article	IF	CITATIONS
199	Indoor perchloroethylene accumulation from dry cleaned clothing on residential premises. Building and Environment, 1998, 34, 319-328.	6.9	6
200	Legionella: Impact of risk on building services systems in Hong Kong. Building Services Engineering Research and Technology, 1997, 18, 93-98.	1.8	3
201	Determination of radon emanation and back diffusion characteristics of building materials in small chamber tests. Building and Environment, 1997, 32, 355-362.	6.9	55
202	Influence of ventilation on indoor radon level. Building and Environment, 1997, 32, 527-534.	6.9	49
203	Concurrent Horizontal Flame Spread: The Combined Effect of Oxidizer Flow Velocity, Turbulence and Oxygen Concentration. Combustion Science and Technology, 1995, 110-111, 19-51.	2.3	15
204	Phase transformation in an Fe-9.0Al-29.5Mn-1.2Si alloy. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 1407-1415.	1.4	13
205	The effect of gate electrodes using tungsten silicides and/or poly-silicon on the dielectric characteristics of very thin oxides. Solid-State Electronics, 1990, 33, 365-373.	1.4	6