Nianqing Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3819228/publications.pdf

Version: 2024-02-01

361413 330143 1,435 43 20 37 citations h-index g-index papers 43 43 43 2395 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Directly purifiable Pre-oxidation of Spiro-OMeTAD for stability enhanced perovskite solar cells with efficiency over 23%. Chemical Engineering Journal, 2022, 437, 135457.	12.7	14
2	Modification of SnO2 electron transport Layer: Brilliant strategies to make perovskite solar cells stronger. Chemical Engineering Journal, 2022, 439, 135687.	12.7	40
3	Regulating the Heterostructure of Metal/Oxide toward the Enhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 5644-5651.	5.1	16
4	Highly-Crystalline SnO ₂ Thin Films for Efficient Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 5704-5710.	5.1	3
5	Efficient and stable perovskite solar cells based on a quasi-point-contact and rear-reflection structure with 22.5% efficiency. Journal of Materials Chemistry A, 2021, 9, 14877-14887.	10.3	8
6	Plasmonic perovskite solar cells: An overview from metal particle structure to device design. Surfaces and Interfaces, 2021, 25, 101287.	3.0	15
7	Direct Surface Passivation of Perovskite Film by 4-Fluorophenethylammonium Iodide toward Stable and Efficient Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2558-2565.	8.0	71
8	A fast and general approach to produce a carbon coated Janus metal/oxide hybrid for catalytic water splitting. Journal of Materials Chemistry A, 2021, 9, 7606-7616.	10.3	17
9	Effect of TZVCC drying temperature on the adhesion performance of the epoxy coating on AA6063. Journal of Adhesion, 2020, 96, 565-579.	3.0	2
10	In Situ Growth of BiOI/MoS 2 Heterostructure as Pt Supports for Visible Lightâ€Assisted Electrocatalytic Methanol Oxidation Reaction. Energy Technology, 2020, 8, 1900731.	3.8	7
11	Synthesis of Pt nanoparticles supported on a novel 2D bismuth tungstate/lanthanum titanate heterojunction for photoelectrocatalytic oxidation of methanol. Journal of Colloid and Interface Science, 2020, 561, 338-347.	9.4	25
12	Broadband Plasmonic Enhancement of High-Efficiency Dye-Sensitized Solar Cells by Incorporating Au@Ag@SiO ₂ Core–Shell Nanocuboids. ACS Applied Materials & amp; Interfaces, 2020, 12, 538-545.	8.0	24
13	Surface Functionalization of TiO ₂ Nanoparticles Influences the Conductivity of Ionic Liquid-Based Composite Electrolytes. ACS Applied Nano Materials, 2020, 3, 342-350.	5.0	15
14	Engineering NiFe layered double hydroxide by valence control and intermediate stabilization toward the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 26130-26138.	10.3	62
15	lonic conductivity enhancement of "soggy sand―electrolytes with AlOOH nanofibers for dye-sensitized solar cells. Electrochimica Acta, 2020, 337, 135849.	5.2	4
16	Au/TiO2 nanotube array based multi-hierarchical architecture for highly efficient dye-sensitized solar cells. Journal of Power Sources, 2019, 439, 227076.	7.8	21
17	2D Semiconductor Bi 2 WO 6 Nanosheets as the Pt Carriers for Ethylene Glycol Oxidation Reaction with Photoelectric Interaction. Energy Technology, 2019, 7, 1900253.	3.8	8
18	Revisit of amorphous semiconductor InGaZnO4: A new electron transport material for perovskite solar cells. Journal of Alloys and Compounds, 2019, 789, 276-281.	5.5	16

#	Article	IF	CITATIONS
19	Highly efficient ethylene glycol electrocatalytic oxidation based on bimetallic PtNi on 2D molybdenum disulfide/reduced graphene oxide nanosheets. Journal of Colloid and Interface Science, 2019, 547, 102-110.	9.4	23
20	Realization of ultra-long columnar single crystals in TiO ₂ nanotube arrays as fast electron transport channels for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 11520-11529.	10.3	19
21	Facile fabrication of highly efficient ETL-free perovskite solar cells with 20% efficiency by defect passivation and interface engineering. Chemical Communications, 2019, 55, 2777-2780.	4.1	61
22	Facile fabrication of open-ended TiO2 nanotube arrays with large area for efficient dye-sensitized solar cells. Electrochimica Acta, 2019, 299, 339-345.	5.2	16
23	One-pot fabrication of Nitrogen-doped graphene supported binary palladium-sliver nanocapsules enable efficient ethylene glycol electrocatalysis. Journal of Colloid and Interface Science, 2019, 535, 392-399.	9.4	11
24	Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 8886-8894.	10.3	80
25	Boosting the oxygen evolution reaction in non-precious catalysts by structural and electronicÂengineering. Journal of Materials Chemistry A, 2018, 6, 10253-10263.	10.3	54
26	Coupling plasmonic nanoparticles with TiO2 nanotube photonic crystals for enhanced dye-sensitized solar cells performance. Electrochimica Acta, 2018, 263, 373-381.	5.2	23
27	Facile synthesis of Mn-doped TiO2 nanotubes with enhanced visible light photocatalytic activity. Journal of Applied Electrochemistry, 2018, 48, 1197-1203.	2.9	13
28	2D/1D heterostructure of g-C3N4 nanosheets/CdS nanowires as effective photo-activated support for photoelectrocatalytic oxidation of methanol. Catalysis Today, 2018, 315, 36-45.	4.4	48
29	Changes of the dye adsorption state induced by ferroelectric polarization to improve photoelectric performance. Journal of Materials Chemistry A, 2018, 6, 24595-24602.	10.3	12
30	lonic liquid modified SnO ₂ nanocrystals as a robust electron transporting layer for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 22086-22095.	10.3	66
31	Low temperature transfer of well-tailored TiO2 nanotube array membrane for efficient plastic dye-sensitized solar cells. Journal of Power Sources, 2017, 343, 47-53.	7.8	19
32	Hybrid n-type Sn _{1â^'x} Ta _x O ₂ nanowalls bonded with graphene-like layers as high performance electrocatalysts for flexible energy conversion devices. Journal of Materials Chemistry A, 2017, 5, 6884-6892.	10.3	8
33	Panchromatic thin perovskite solar cells with broadband plasmonic absorption enhancement and efficient light scattering management by Au@Ag core-shell nanocuboids. Nano Energy, 2017, 41, 654-664.	16.0	68
34	Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28406-28411.	8.0	83
35	Metal and F dual-doping to synchronously improve electron transport rate and lifetime for TiO ₂ photoanode to enhance dye-sensitized solar cells performances. Journal of Materials Chemistry A, 2015, 3, 5692-5700.	10.3	29
36	Effects of Ga doping and hollow structure on the band-structures and photovoltaic properties of SnO ₂ photoanode dye-sensitized solar cells. RSC Advances, 2015, 5, 93765-93772.	3.6	10

#	Article	IF	CITATIONS
37	Cyclometalated ruthenium(<scp>ii</scp>) complexes with bis(benzimidazolyl)benzene for dye-sensitized solar cells. RSC Advances, 2015, 5, 90001-90009.	3.6	15
38	Organic-free Anatase TiO2 Paste for Efficient Plastic Dye-Sensitized Solar Cells and Low Temperature Processed Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19431-19438.	8.0	34
39	Facile preparation of hierarchical TiO ₂ nanowire–nanoparticle/nanotube architecture for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 20366-20374.	10.3	23
40	Enhancing the performance of dye-sensitized solar cells: doping SnO ₂ photoanodes with Al to simultaneously improve conduction band and electron lifetime. Journal of Materials Chemistry A, 2015, 3, 3066-3073.	10.3	51
41	Facile fabrication of highly porous photoanode at low temperature for all-plastic dye-sensitized solar cells with quasi-solid state electrolyte. Journal of Power Sources, 2014, 271, 8-15.	7.8	10
42	Mn3O4/graphene composite as counter electrode in dye-sensitized solar cells. RSC Advances, 2014, 4, 15091.	3.6	50
43	Sn-Doped TiO ₂ Photoanode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 8888-8893.	3.1	241