Xiaofang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3819188/publications.pdf

Version: 2024-02-01

257450 289244 1,790 64 24 40 citations g-index h-index papers 65 65 65 1738 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mesogen-jacketed liquid crystalline polymers. Chemical Society Reviews, 2010, 39, 3072.	38.1	202
2	Tunable assembly of amphiphilic rod–coil block copolymers in solution. Chemical Society Reviews, 2013, 42, 9127.	38.1	124
3	Reverse atom transfer radical polymerization of methyl methacrylate in room-temperature ionic liquids. Journal of Polymer Science Part A, 2003, 41, 143-151.	2.3	91
4	Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization. Journal of Polymer Science Part A, 2006, 44, 4656-4667.	2.3	90
5	Design, Synthesis, and Characterization of Bent-Core Mesogen-Jacketed Liquid Crystalline Polymers. Macromolecules, 2006, 39, 517-527.	4.8	67
6	Organic–inorganic hybrid bent-core liquid crystals with cubic silsesquioxane cores. Journal of Materials Chemistry, 2008, 18, 3481.	6.7	58
7	Self-assembly of highly luminescent bi-1,3,4-oxadiazole derivatives through electron donor–acceptor interactions in three-dimensional crystals, two-dimensional layers and mesophases. Journal of Materials Chemistry, 2008, 18, 3954.	6.7	56
8	Self-Assembled Nanostructures of Rodâ^'Coil Diblock Copolymers with Different Rod Lengths. Macromolecules, 2003, 36, 6565-6569.	4.8	49
9	Water soluble multi-walled carbon nanotubes prepared via nitroxide-mediated radical polymerization. Journal of Materials Chemistry, 2006, 16, 4619.	6.7	48
10	Synthesis and characterization of mesogen-jacketed liquid-crystal polymers based on 2,5-bis(4′-alkoxyphenyl)styrene. Journal of Polymer Science Part A, 2003, 41, 1454-1464.	2.3	47
11	Supramolecular Fluorescent Polymers Containing α-Cyanostilbene-Based Stereoisomers: $\langle i \times Z < i \times < i \times Z < < i \times $	4.8	47
12	Effects of Mesogenic Shape and Flexibility on the Phase Structures of Mesogen-Jacketed Liquid Crystalline Polymers with Bent Side Groups Containing 1,3,4-Oxadiazole. Macromolecules, 2009, 42, 2542-2550.	4.8	45
13	Hemiphasmidic Side-Chain Liquid Crystalline Polymer: From Smectic C Phase to Columnar Phase with a Bundle of Chains as Its Building Block. ACS Macro Letters, 2012, 1, 641-645.	4.8	41
14	Side-Chain Liquid Crystalline Poly(meth)acrylates with Bent-Core Mesogens. Macromolecules, 2007, 40, 840-848.	4.8	39
15	Photochromic fluorescence switching in liquid crystalline polynorbornenes with α-cyanostilbene side-chains. Journal of Materials Chemistry C, 2020, 8, 6461-6469.	5.5	35
16	ABA type liquid crystalline triblock copolymers by combination of living cationic polymerizaition and ATRP: synthesis and self-assembly. Soft Matter, 2008, 4, 1230.	2.7	33
17	Competition between liquid crystallinity and block copolymerself-assembly in core–shell rod–coil block copolymers. Soft Matter, 2008, 4, 458-461.	2.7	32
18	Synthesis and characterization of bipolar copolymers containing oxadiazole and carbazole pendant groups and their application to electroluminescent devices. Journal of Polymer Science Part A, 2008, 46, 5452-5460.	2.3	31

#	Article	IF	CITATIONS
19	Tailoring Thermotropic Liquid Crystalline Properties of Random Copolymers Based on Vinyl Monomers with Laterally Attached Mesogenic and Nonmesogenic Substituents via No Spacer. Macromolecules, 2006, 39, 6887-6897.	4.8	29
20	Influence of alkoxy tail length and unbalanced mesogenic core on phase behavior of mesogenâ€jacketed liquid crystalline polymers. Journal of Polymer Science Part A, 2009, 47, 505-514.	2.3	27
21	Hierarchical Nanostructures of Bent-Core Molecules Blended with Poly(styrene-b-4-vinylpyridine) Block Copolymer. Macromolecules, 2007, 40, 5095-5102.	4.8	26
22	Synthesis, characterisation and liquid crystal properties of 2,5â€bis[5â€alkyl(alkoxy)phenylâ€1,3,4â€oxadiazole]bromobenzenes. Liquid Crystals, 2008, 35, 133-141.	2.2	26
23	Synthesis and Characterization of Helix-Coil Diblock Copolymers with Controlled Supramolecular Architectures in Aqueous Solution. Macromolecular Rapid Communications, 2005, 26, 1241-1245.	3.9	24
24	Synthesis and properties of silicon-containing bismaleimide resins. Journal of Applied Polymer Science, 2008, 109, 190-199.	2.6	24
25	Self-assembled hierarchical structure evolution of azobenzene-containing linear-dendritic liquid crystalline block copolymers. Soft Matter, 2012, 8, 6174.	2.7	24
26	Synthesis and chiroptical properties of optically active poly(N-propargylamide) bearing photoisomerizable azobenzene moieties. Journal of Polymer Science Part A, 2006, 44, 6047-6054.	2.3	23
27	Jacketed polymers: Controlled synthesis of mesogenâ€jacketed polymers and block copolymers. Journal of Polymer Science Part A, 2009, 47, 319-330.	2.3	23
28	Mesogen-jacketed liquid crystalline polymer with flexible dicyclopentyl terephthalate as side group. Macromolecular Rapid Communications, 1999, 20, 549-551.	3.9	19
29	A novel mesogenâ€jacketed liquid crystalline electroluminescent polymer with both thiophene and oxadiazole in conjugated side chain. Journal of Polymer Science Part A, 2010, 48, 1502-1515.	2.3	19
30	Synthesis and characterization of novel rod-coil diblock copolymers of poly(methyl methacrylate) and liquid crystalline segments of poly(2,5-bis[(4-methoxyphenyl)oxycarbonyl] styrene). Polymer International, 2003, 52, 92-97.	3.1	18
31	Synthesis and properties of azobenzene-containing poly(1-alkyne)s with different functional pendant groups. Journal of Polymer Science Part A, 2006, 44, 4532-4545.	2.3	18
32	Preparation and properties of highly birefringent liquid crystalline materials: styrene monomers with acetylenes, naphthyl, and isothiocyanate groups. Liquid Crystals, 2010, 37, 453-462.	2.2	18
33	Ordered gold nanoparticle arrays obtained with supramolecular block copolymers. Soft Matter, 2013, 9, 4715.	2.7	18
34	Single layer lightâ€emitting diodes from copolymers comprised of mesogenâ€jacketed polymer containing oxadiazole units and PVK. Journal of Polymer Science Part A, 2008, 46, 1843-1851.	2.3	16
35	Sideâ€chain liquidâ€crystalline polymers based on flexible rodâ€like mesogen directly attached to backbone. Journal of Polymer Science Part A, 2012, 50, 5023-5031.	2.3	16
36	Novel mesogenâ€jacketed poly(<i>p</i> pphenylenevinylene) derivatives bearing oxadiazole pendants: Design, synthesis, and optoelectronic properties. Journal of Polymer Science Part A, 2008, 46, 7173-7186.	2.3	14

#	Article	IF	Citations
37	Bipolar copolymers comprised mesogenâ€jacketed polymer containing oxadiazole units and PVK as host materials for electroluminescent devices. Journal of Polymer Science Part A, 2008, 46, 7861-7867.	2.3	14
38	Synthesis and properties of highly birefringent liquid crystalline materials: 2,5-bis(5-alkyl-2-butadinylthiophene-yl) styrene monomers. Liquid Crystals, 2009, 37, 69-76.	2.2	14
39	Biomacrocyclic side-chain liquid crystalline polymers bearing cholesterol mesogens: facile synthesis and topological effect study. Polymer Chemistry, 2015, 6, 6885-6893.	3.9	14
40	Copolymers of 2,5-bis[(4-methoxyphenyl) oxycarbonyl]styrene with styrene and methyl methacrylate: Synthesis, monomer reactivity ratios, thermal properties, and liquid crystalline behavior. Journal of Polymer Science Part A, 2005, 43, 2666-2674.	2.3	13
41	Synthesis and mesophase behaviors of 2,5-disubstituted styrene-based random copolymers: Effect of difference in side-group length on liquid crystallinity. Polymer, 2007, 48, 4252-4263.	3.8	13
42	Influence of linkage and terminal group on the liquid crystalline and helical twisting behaviours of cholesteryl esters. Liquid Crystals, 2011, 38, 803-812.	2.2	13
43	Self-assembly of amphiphilic macrocycles containing polymeric liquid crystal grafts in solution. Polymer Chemistry, 2016, 7, 2785-2789.	3.9	13
44	Synthesis and mesomorphic properties of side-chain polynorbornenes containing mono-, di- and tri-calamitic mesogenic pendant groups. Polymer Chemistry, 2016, 7, 3520-3529.	3.9	12
45	ABAâ€type liquid crystalline triblock copolymers via nitroxideâ€mediated radical polymerization: Design, synthesis, and morphologies. Journal of Polymer Science Part A, 2007, 45, 5949-5956.	2.3	11
46	Order-order transition induced by mesophase formation in a novel type of diblock copolymers based on poly(isobutyl methacrylate) and poly[2,5-di(isopropyloxycarbonyl)styrene]. Soft Matter, 2010, 6, 922-927.	2.7	11
47	Hydrogen-Bonded Polymers with Bent-Shaped Side Chains and Poly(4-vinylpridine) Backbone: Phase Behavior and Thin Film Morphologies. Macromolecules, 2014, 47, 3917-3925.	4.8	11
48	Tunable Supramolecular Hexagonal Columnar Structures of Hydrogen-Bonded Copolymers Containing Two Different Sized Dendritic Side Chains. ACS Macro Letters, 2017, 6, 479-484.	4.8	11
49	Cooperation of Amphiphilicity and Smectic Order in Regulating the Self-Assembly of Cholesterol-Functionalized Brush-Like Block Copolymers. Langmuir, 2018, 34, 11034-11041.	3.5	11
50	Synthesis, characterization, and electroluminescence of novel copolyfluorenes and their applications in white light emission. Journal of Polymer Science Part A, 2009, 47, 4555-4565.	2.3	10
51	Controlling the packing of gold nanoparticles with grafted liquid crystals. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	9
52	Copolymers of 2,5-bis[(4-methoxyphenyl) oxycarbonyl]styrene withn-butyl acrylate: Design, synthesis, and characterization. Journal of Polymer Science Part A, 2005, 43, 5935-5943.	2.3	8
53	Synthesis and characterization of graft copolymers containing poly(p-phenylene) main chains and mesogen-jacketed liquid-crystalline polystyrene side chains. Journal of Polymer Science Part A, 2007, 45, 2543-2555.	2.3	8
54	Mechanofluorochromism and mechanical force-triggered solid-state [2+2] photocycloaddition in \hat{l} ±-cyanostilbene derivatives. Dyes and Pigments, 2022, 201, 110205.	3.7	8

#	Article	IF	CITATIONS
55	Chiral nematic liquid crystals with helix inversion from (R)-1,1′-binaphthyl and cholesteryl ester moieties. Liquid Crystals, 2012, 39, 1284-1290.	2.2	7
56	Special positive birefringence properties of mesogen-jacketed liquid crystalline polymer films for optical compensators. Polymer Chemistry, 2010, 1, 430-433.	3.9	6
57	Hydrogen-bonded liquid crystalline polymers containing poly(4-vinylpridine) and dendron-like side chains: Fromlamellar to columnar phase. Materials Today Communications, 2015, 4, 77-85.	1.9	6
58	Dumbbell-shaped Carbosilane Dendrimers Based on 1,6-Hexanediol. Chinese Journal of Chemistry, 2005, 23, 11-13.	4.9	4
59	A novel pentaerythritol-based carbosilane liquid crystalline dendrimer containing 12 nitroazobenzene groups on the periphery. Chinese Journal of Chemistry, 2010, 22, 1034-1038.	4.9	4
60	Synthesis and ordered aggregation in water of a blue light-emitting PEO-PHP-PEO triblock oligomer. Science Bulletin, 2003, 48, 1525-1530.	1.7	3
61	Ellipsoid-shaped Carbosilane Dendrimers Modified withp-Nitroazobenzene Mesogens on the Periphery. Chinese Journal of Chemistry, 2006, 24, 169-171.	4.9	3
62	Restudy of the unusual phase behavior of the mesogen-jacketed liquid crystal polymers. Science in China Series B: Chemistry, 2006, 49, 116-125.	0.8	2
63	Synthesis and supramolecular liquid crystalline structure modulation of side-chain polynorbornenes with asymmetrical substituent mesogenic groups. Polymer Chemistry, 2019, 10, 5751-5759.	3.9	2
64	Composition-dependent phase transformation in side-chain liquid crystalline copolymers with mesogenic groups at different substituent positions. Soft Matter, 2021, 17, 4594-4603.	2.7	2