Martin Schwemmle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3819007/publications.pdf

Version: 2024-02-01

137 papers 8,899 citations

50 h-index 86 g-index

151 all docs

151 docs citations

151 times ranked

10204 citing authors

#	Article	IF	CITATIONS
1	Different but Not Unique: Deciphering the Immunity of the Jamaican Fruit Bat by Studying Its Viriome. Viruses, 2022, 14, 238.	1.5	3
2	Biparatopic nanobodies protect mice from lethal challenge with SARS oVâ€2 variants of concern. EMBO Reports, 2022, 23, e53865.	2.0	18
3	Antibody escape and global spread of SARS-CoV-2 lineage A.27. Nature Communications, 2022, 13, 1152.	5.8	20
4	SARS-CoV-2-specific T-cell epitope repertoire in convalescent and mRNA-vaccinated individuals. Nature Microbiology, 2022, 7, 675-679.	5.9	29
5	Paradoxical immunodeficiencies—When failures of innate immunity cause immunopathology. European Journal of Immunology, 2022, 52, 1419-1430.	1.6	3
6	Are pigs overestimated as a source of zoonotic influenza viruses?. Porcine Health Management, 2022, 8, .	0.9	13
7	Influenza A Viruses: Understanding Human Host Determinants. Trends in Molecular Medicine, 2021, 27, 104-112.	3.5	24
8	Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nature Medicine, 2021, 27, 78-85.	15.2	295
9	Bat-Borne Influenza A Viruses: An Awakening. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038612.	2.9	6
10	Egyptian Fruit Bats (Rousettus aegyptiacus) Were Resistant to Experimental Inoculation with Avian-Origin Influenza A Virus of Subtype H9N2, But Are Susceptible to Experimental Infection with Bat-Borne H9N2 Virus. Viruses, 2021, 13, 672.	1.5	7
11	ITNâ€"VIROINF: Understanding (Harmful) Virus-Host Interactions by Linking Virology and Bioinformatics. Viruses, 2021, 13, 766.	1.5	5
12	Selective Janus kinase inhibition preserves interferon-λ–mediated antiviral responses. Science Immunology, 2021, 6, .	5.6	16
13	Prevalence of SARS-CoV-2 Infection in Children and Their Parents in Southwest Germany. JAMA Pediatrics, 2021, 175, 586.	3.3	124
14	Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature, 2021, 597, 268-273.	13.7	279
15	BRD9 is a druggable component of interferonâ€stimulated gene expression and antiviral activity. EMBO Reports, 2021, 22, e52823.	2.0	11
16	Rare variant $\langle i \rangle$ MX1 $\langle i \rangle$ alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science, 2021, 373, 918-922.	6.0	41
17	Multisystem inflammation and susceptibility to viral infections in human ZNFX1 deficiency. Journal of Allergy and Clinical Immunology, 2021, 148, 381-393.	1.5	40
18	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	0.9	62

#	Article	IF	CITATIONS
19	A Genome-Wide CRISPR/Cas9 Screen Reveals the Requirement of Host Sphingomyelin Synthase 1 for Infection with Pseudorabies Virus Mutant gD–Pass. Viruses, 2021, 13, 1574.	1.5	9
20	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	5.8	41
21	Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants. Nature Communications, 2021, 12, 6405.	5.8	128
22	Pre-existing immunity and vaccine history determine hemagglutinin-specific CD4 T cell and IgG response following seasonal influenza vaccination. Nature Communications, 2021, 12, 6720.	5.8	33
23	Influenza A Viruses and Zoonotic Events—Are We Creating Our Own Reservoirs?. Viruses, 2021, 13, 2250.	1.5	26
24	Zoonotic spillover infections with Borna disease virus 1 leading to fatal human encephalitis, 1999–2019: an epidemiological investigation. Lancet Infectious Diseases, The, 2020, 20, 467-477.	4.6	96
25	Are human Borna disease virus 1 infections zoonotic and fatal? – Authors' reply. Lancet Infectious Diseases, The, 2020, 20, 651.	4.6	10
26	Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses. Cell Host and Microbe, 2020, 28, 614-627.e6.	5.1	76
27	Discrete spatio-temporal regulation of tyrosine phosphorylation directs influenza A virus M1 protein towards its function in virion assembly. PLoS Pathogens, 2020, 16, e1008775.	2.1	6
28	Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nature Microbiology, 2020, 5, 1490-1503.	5.9	45
29	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	0.9	184
30	A Genome-Wide CRISPR-Cas9 Screen Reveals the Requirement of Host Cell Sulfation for Schmallenberg Virus Infection. Journal of Virology, 2020, 94, .	1.5	18
31	Characterization of Experimental Oro-Nasal Inoculation of Seba's Short-Tailed Bats (Carollia) Tj ETQq1 1 0.784	1314 rgBT	/gverlock 1
32	Bats reveal the true power of influenza A virus adaptability. PLoS Pathogens, 2020, 16, e1008384.	2.1	21
33	A modified live bat influenza A virus-based vaccine prototype provides full protection against HPAIV H5N1. Npj Vaccines, 2020, 5, 40.	2.9	6
34	Multilineage murine stem cells generate complex organoids to model distal lung development and disease. EMBO Journal, 2020, 39, e103476.	3.5	44
35	Human bornavirus research: Back on track!. PLoS Pathogens, 2019, 15, e1007873.	2.1	41
36	Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. Science Immunology, 2019, 4, .	5.6	39

#	Article	IF	CITATIONS
37	Zika Virus-Mediated Death of Hippocampal Neurons Is Independent From Maturation State. Frontiers in Cellular Neuroscience, 2019, 13, 389.	1.8	18
38	Bat influenza viruses transmit among bats but are poorly adapted to non-bat species. Nature Microbiology, 2019, 4, 2298-2309.	5.9	42
39	Poly-ADP Ribosyl Polymerase 1 (PARP1) Regulates Influenza A Virus Polymerase. Advances in Virology, 2019, 2-11.	0.5	13
40	Molecular mechanism for the control of virulent Toxoplasma gondii infections in wild-derived mice. Nature Communications, 2019, 10, 1233.	5.8	24
41	A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nature Immunology, 2019, 20, 493-502.	7.0	139
42	Human MxA is a potent interspecies barrier for the novel bat-derived influenza A-like virus H18N11. Emerging Microbes and Infections, 2019, 8, 556-563.	3.0	11
43	MHC class II proteins mediate cross-species entry of bat influenza viruses. Nature, 2019, 567, 109-112.	13.7	91
44	Packaging of the Influenza Virus Genome Is Governed by a Plastic Network of RNA- and Nucleoprotein-Mediated Interactions. Journal of Virology, 2019, 93, .	1.5	35
45	Eurasian Avian-Like Swine Influenza A Viruses Escape Human MxA Restriction through Distinct Mutations in Their Nucleoprotein. Journal of Virology, 2019, 93, .	1.5	26
46	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	0.9	153
47	SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Scientific Reports, 2018, 8, 2092.	1.6	12
48	Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins. Journal of Virology, 2018, 92, .	1.5	9
49	Specific Mutations in the PB2 Protein of Influenza A Virus Compensate for the Lack of Efficient Interferon Antagonism of the NS1 Protein of Bat Influenza A-Like Viruses. Journal of Virology, 2018, 92,	1.5	11
50	Fatal Encephalitic Borna Disease Virus 1 in Solid-Organ Transplant Recipients. New England Journal of Medicine, 2018, 379, 1377-1379.	13.9	106
51	Partial Inactivation of the Chromatin Remodelers SMARCA2 and SMARCA4 in Virus-Infected Cells by Caspase-Mediated Cleavage. Journal of Virology, 2018, 92, .	1.5	9
52	Influenza A Virus Induces Autophagosomal Targeting of Ribosomal Proteins. Molecular and Cellular Proteomics, 2018, 17, 1909-1921.	2.5	22
53	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	0.9	173
54	In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein. Journal of Experimental Medicine, 2017, 214, 1239-1248.	4.2	44

#	Article	IF	CITATIONS
55	Role of influenza A virus NP acetylation on viral growth and replication. Nature Communications, 2017, 8, 1259.	5.8	46
56	Novel insights into bat influenza A viruses. Journal of General Virology, 2017, 98, 2393-2400.	1.3	25
57	The Feat of Packaging Eight Unique Genome Segments. Viruses, 2016, 8, 165.	1.5	23
58	An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Scientific Reports, 2016, 6, 25873.	1.6	35
59	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	0.9	407
60	Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12797-12802.	3.3	41
61	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	2.7	17
62	A conserved influenza A virus nucleoprotein code controls specific viral genome packaging. Nature Communications, 2016, 7, 12861.	5 . 8	40
63	Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Scientific Reports, 2016, 6, 23138.	1.6	146
64	Chiropteran influenza viruses: flu from bats or a relic from the past?. Current Opinion in Virology, 2016, 16, 114-119.	2.6	12
65	Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends in Microbiology, 2015, 23, 154-163.	3.5	378
66	The Nucleoprotein of Newly Emerged H7N9 Influenza A Virus Harbors a Unique Motif Conferring Resistance to Antiviral Human MxA. Journal of Virology, 2015, 89, 2241-2252.	1.5	56
67	Influenza Virus Adaptation PB2-627K Modulates Nucleocapsid Inhibition by the Pathogen Sensor RIG-I. Cell Host and Microbe, 2015, 17, 309-319.	5.1	118
68	Taxonomic reorganization of the family Bornaviridae. Archives of Virology, 2015, 160, 621-632.	0.9	97
69	Generation of a variety of stable Influenza A reporter viruses by genetic engineering of the NS gene segment. Scientific Reports, 2015, 5, 11346.	1.6	57
70	Novel Bat Influenza Virus NS1 Proteins Bind Double-Stranded RNA and Antagonize Host Innate Immunity. Journal of Virology, 2015, 89, 10696-10701.	1.5	16
71	Expected and Unexpected Features of the Newly Discovered Bat Influenza A-like Viruses. PLoS Pathogens, 2015, 11, e1004819.	2.1	37
72	Adaptive Mutations in the Nuclear Export Protein of Human-Derived H5N1 Strains Facilitate a Polymerase Activity-Enhancing Conformation. Journal of Virology, 2014, 88, 263-271.	1.5	22

#	Article	IF	CITATIONS
73	An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus. Nature Communications, 2014, 5, 4448.	5.8	80
74	Influenza, a One Health paradigmâ€"Novel therapeutic strategies to fight a zoonotic pathogen with pandemic potential. International Journal of Medical Microbiology, 2014, 304, 894-901.	1.5	24
75	Phosphorylation of Highly Conserved Serine Residues in the Influenza A Virus Nuclear Export Protein NEP Plays a Minor Role in Viral Growth in Human Cells and Mice. Journal of Virology, 2014, 88, 7668-7673.	1.5	13
76	The Nuclear Export Protein of H5N1 Influenza A Viruses Recruits Matrix 1 (M1) Protein to the Viral Ribonucleoprotein to Mediate Nuclear Export. Journal of Biological Chemistry, 2014, 289, 20067-20077.	1.6	55
77	Absence of a robust innate immune response in rat neurons facilitates persistent infection of Borna disease virus in neuronal tissue. Cellular and Molecular Life Sciences, 2013, 70, 4399-4410.	2.4	12
78	Pandemic Influenza A Viruses Escape from Restriction by Human MxA through Adaptive Mutations in the Nucleoprotein. PLoS Pathogens, 2013, 9, e1003279.	2.1	156
79	Analysis of Borna Disease Virus Trafficking in Live Infected Cells by Using a Virus Encoding a Tetracysteine-Tagged P Protein. Journal of Virology, 2013, 87, 12339-12348.	1.5	31
80	Borna disease virus-induced neuronal degeneration dependent on host genetic background and prevented by soluble factors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1899-1904.	3.3	19
81	Adaptation of Avian Influenza A Virus Polymerase in Mammals To Overcome the Host Species Barrier. Journal of Virology, 2013, 87, 7200-7209.	1.5	188
82	Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells. Nature Communications, 2012, 3, 802.	5.8	113
83	Bornavirus Closely Associates and Segregates with Host Chromosomes to Ensure Persistent Intranuclear Infection. Cell Host and Microbe, 2012, 11, 492-503.	5.1	94
84	Affinity Purification of Influenza Virus Ribonucleoprotein Complexes from the Chromatin of Infected Cells. Journal of Visualized Experiments, 2012, , e4028.	0.2	2
85	Identification of influenza virus inhibitors which disrupt of viral polymerase protein–protein interactions. Methods, 2011, 55, 188-191.	1.9	27
86	Viral interference with neuronal integrity: what can we learn from the Borna disease virus?. Cell and Tissue Research, 2011, 344, 13-16.	1.5	2
87	The Influenza A Virus NS1 Protein Interacts with the Nucleoprotein of Viral Ribonucleoprotein Complexes. Journal of Virology, 2011, 85, 5228-5231.	1.5	51
88	The Viral Nucleoprotein Determines Mx Sensitivity of Influenza A Viruses. Journal of Virology, 2011, 85, 8133-8140.	1.5	159
89	Identification of High-Affinity PB1-Derived Peptides with Enhanced Affinity to the PA Protein of Influenza A Virus Polymerase. Antimicrobial Agents and Chemotherapy, 2011, 55, 696-702.	1.4	52
90	Disruption of the Viral Polymerase Complex Assembly as a Novel Approach to Attenuate Influenza A Virus. Journal of Biological Chemistry, 2011, 286, 8414-8424.	1.6	31

#	Article	IF	Citations
91	Reversion of PB2-627E to -627K during Replication of an H5N1 Clade 2.2 Virus in Mammalian Hosts Depends on the Origin of the Nucleoprotein. Journal of Virology, 2011, 85, 10691-10698.	1.5	52
92	Targeting of the Influenza A Virus Polymerase PB1-PB2 Interface Indicates Strain-Specific Assembly Differences. Journal of Virology, 2011, 85, 13298-13309.	1.5	25
93	Influenza Virus Ribonucleoprotein Complexes Gain Preferential Access to Cellular Export Machinery through Chromatin Targeting. PLoS Pathogens, 2011, 7, e1002187.	2.1	58
94	Protein kinase C-dependent phosphorylation of Borna disease virus P protein is required for efficient viral spread. Archives of Virology, 2010, 155, 789-793.	0.9	7
95	Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut-off activity. Journal of General Virology, 2010, 91, 2782-2793.	1.3	79
96	Lambda Interferon Renders Epithelial Cells of the Respiratory and Gastrointestinal Tracts Resistant to Viral Infections. Journal of Virology, 2010, 84, 5670-5677.	1.5	369
97	A Polymorphism in the Hemagglutinin of the Human Isolate of a Highly Pathogenic H5N1 Influenza Virus Determines Organ Tropism in Mice. Journal of Virology, 2010, 84, 8316-8321.	1.5	21
98	Limited Compatibility of Polymerase Subunit Interactions in Influenza A and B Viruses. Journal of Biological Chemistry, 2010, 285, 16704-16712.	1.6	23
99	Identification of a PA-Binding Peptide with Inhibitory Activity against Influenza A and B Virus Replication. PLoS ONE, 2009, 4, e7517.	1.1	75
100	Attenuation of Rabies Virus Replication and Virulence by Picornavirus Internal Ribosome Entry Site Elements. Journal of Virology, 2009, 83, 1911-1919.	1.5	31
101	Mutation of the Protein Kinase C Site in Borna Disease Virus Phosphoprotein Abrogates Viral Interference with Neuronal Signaling and Restores Normal Synaptic Activity. PLoS Pathogens, 2009, 5, e1000425.	2.1	30
102	The Interferon Antagonist ML Protein of Thogoto Virus Targets General Transcription Factor IIB. Journal of Virology, 2008, 82, 11446-11453.	1.5	24
103	Functional Characterization of the Major and Minor Phosphorylation Sites of the P Protein of Borna Disease Virus. Journal of Virology, 2007, 81, 5497-5507.	1.5	26
104	Peptide-Mediated Interference with Influenza A Virus Polymerase. Journal of Virology, 2007, 81, 7801-7804.	1.5	119
105	Identification of Cellular Interaction Partners of the Influenza Virus Ribonucleoprotein Complex and Polymerase Complex Using Proteomic-Based Approaches. Journal of Proteome Research, 2007, 6, 672-682.	1.8	200
106	Borna Disease Virus Matrix Protein Is an Integral Component of the Viral Ribonucleoprotein Complex That Does Not Interfere with Polymerase Activity. Journal of Virology, 2007, 81, 743-749.	1.5	30
107	Isolation of viral ribonucleoprotein complexes from infected cells by tandem affinity purification. Proteomics, 2005, 5, 4483-4487.	1.3	19
108	Borna Disease Virus Replication in Organotypic Hippocampal Slice Cultures from Rats Results in Selective Damage of Dentate Granule Cells. Journal of Virology, 2005, 79, 11716-11723.	1.5	30

#	Article	IF	Citations
109	The negative regulator of Borna disease virus polymerase is a non-structural protein. Journal of General Virology, 2005, 86, 3163-3169.	1.3	20
110	Genome trimming: A unique strategy for replication control employed by Borna disease virus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3441-3446.	3.3	83
111	Borna disease virus interference with neuronal plasticity. Virus Research, 2005, 111, 224-234.	1.1	37
112	Overlap of Interaction Domains Indicates a Central Role of the P Protein in Assembly and Regulation of the Borna Disease Virus Polymerase Complex. Journal of Biological Chemistry, 2004, 279, 55290-55296.	1.6	25
113	The use of peptide arrays for the characterization of monospecific antibody repertoires from polyclonal sera of psychiatric patients suspected of infection by Borna Disease Virus. Molecular Diversity, 2004, 8, 247-250.	2.1	9
114	Active Borna Disease Virus Polymerase Complex Requires a Distinct Nucleoprotein-to-Phosphoprotein Ratio but No Viral X Protein. Journal of Virology, 2003, 77, 11781-11789.	1.5	70
115	Selective Virus Resistance Conferred by Expression of Borna Disease Virus Nucleocapsid Components. Journal of Virology, 2003, 77, 4283-4290.	1.5	66
116	Guanylate-Binding Protein-1 Expression Is Selectively Induced by Inflammatory Cytokines and Is an Activation Marker of Endothelial Cells during Inflammatory Diseases. American Journal of Pathology, 2002, 161, 1749-1759.	1.9	129
117	High-avidity human serum antibodies recognizing linear epitopes of borna disease virus proteins. Biological Psychiatry, 2002, 51, 979-987.	0.7	68
118	Borna disease virus infection in psychiatric patients: are we on the right track?. Lancet Infectious Diseases, The, 2001, 1, 46-52.	4.6	50
119	Conservation of coding potential and terminal sequences in four different isolates of Borna disease virus. Journal of General Virology, 2001, 82, 2681-2690.	1.3	49
120	Isolation and Characterization of a New Subtype of Borna Disease Virus. Journal of Virology, 2000, 74, 5655-5658.	1.5	89
121	Sequence Variability of Borna Disease Virus: Resistance to Superinfection May Contribute to High Genome Stability in Persistently Infected Cells. Journal of Virology, 2000, 74, 7878-7883.	1.5	38
122	Authentic Borna disease virus transcripts are spliced less efficiently than cDNA-derived viral RNAs. Journal of General Virology, 2000, 81, 1947-1954.	1.3	12
123	Epidemiology of Borna disease virus. Journal of General Virology, 2000, 81, 2123-2135.	1.3	200
124	Sequence similarities between human bornavirus isolates and laboratory strains question human origin. Lancet, The, 1999, 354, 1973-1974.	6.3	74
125	Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 292, 321-332.	2.0	114
126	Interactions of the Borna Disease Virus P, N, and X Proteins and Their Functional Implications. Journal of Biological Chemistry, 1998, 273, 9007-9012.	1.6	77

#	Article	IF	CITATIONS
127	Borna Disease Virus-Induced Neurological Disorder in Mice: Infection of Neonates Results in Immunopathology. Journal of Virology, 1998, 72, 4379-4386.	1.5	92
128	Borna Disease Virus P-protein Is Phosphorylated by Protein Kinase CÎ μ and Casein Kinase II. Journal of Biological Chemistry, 1997, 272, 21818-21823.	1.6	63
129	Borna disease virus in brains of North American and European people with schizophrenia and bipolar disorder. Lancet, The, 1997, 349, 1813-1814.	6.3	105
130	GTPase properties of the interferon-induced human guanylate-binding protein 2. FEBS Letters, 1996, 390, 69-72.	1.3	45
131	Prenylation of an interferon- \hat{l}^3 -induced GTP-binding protein: the human guanylate binding protein, huGBP1. Journal of Leukocyte Biology, 1996, 60, 423-431.	1.5	60
132	Chicken Guanylate-binding Protein. Journal of Biological Chemistry, 1996, 271, 10304-10308.	1.6	34
133	Vesicular stomatitis virus transcription inhibited by purified MxA protein. Virology, 1995, 206, 545-554.	1.1	80
134	Nuclear Localization of the Interferon-Inducible Protein Kinase PKR in Human Cells and Transfected Mouse Cells. Experimental Cell Research, 1995, 218, 17-27.	1.2	114
135	Isolation of rat cDNA clones coding for the autoantigen SS-B/La: detection of species-specific variations. Gene, 1993, 126, 265-268.	1.0	28
136	Comparative analysis of the regulation of the interferoninducible protein kinase PKR by Epstein - Barr virus RNAs EBER-1 and EBER-2 and adenovirus VA, RNA. Nucleic Acids Research, 1993, 21, 4483-4490.	6.5	189
137	Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Research, 1991, 19, 243-248.	6.5	180