Chris Boutell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3818100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature, 2009, 462, 886-890.	27.8	377
2	Herpes Simplex Virus Type 1 Immediate-Early Protein ICPO and Its Isolated RING Finger Domain Act as Ubiquitin E3 Ligases In Vitro. Journal of Virology, 2002, 76, 841-850.	3.4	343
3	Loss of HAUSP-Mediated Deubiquitination Contributes to DNA Damage-Induced Destabilization of Hdmx and Hdm2. Molecular Cell, 2005, 18, 565-576.	9.7	247
4	Regulation of alphaherpesvirus infections by the ICPO family of proteins. Journal of General Virology, 2013, 94, 465-481.	2.9	176
5	A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO Journal, 2010, 29, 943-955.	7.8	162
6	A Viral Ubiquitin Ligase Has Substrate Preferential SUMO Targeted Ubiquitin Ligase Activity that Counteracts Intrinsic Antiviral Defence. PLoS Pathogens, 2011, 7, e1002245.	4.7	150
7	Host and Viral Determinants of Mx2 Antiretroviral Activity. Journal of Virology, 2014, 88, 7738-7752.	3.4	144
8	Interplay between viruses and host sumoylation pathways. Nature Reviews Microbiology, 2013, 11, 400-411.	28.6	143
9	A RING Finger Ubiquitin Ligase Is Protected from Autocatalyzed Ubiquitination and Degradation by Binding to Ubiquitin-specific Protease USP7. Journal of Biological Chemistry, 2004, 279, 38160-38168.	3.4	121
10	Reciprocal Activities between Herpes Simplex Virus Type 1 Regulatory Protein ICPO, a Ubiquitin E3 Ligase, and Ubiquitin-Specific Protease USP7. Journal of Virology, 2005, 79, 12342-12354.	3.4	121
11	The Herpes Simplex Virus Type 1 (HSV-1) Regulatory Protein ICPO Interacts with and Ubiquitinates p53. Journal of Biological Chemistry, 2003, 278, 36596-36602.	3.4	119
12	Phenotype of a Herpes Simplex Virus Type 1 Mutant That Fails To Express Immediate-Early Regulatory Protein ICPO. Journal of Virology, 2004, 78, 1763-1774.	3.4	119
13	The Intrinsic Antiviral Defense to Incoming HSV-1 Genomes Includes Specific DNA Repair Proteins and Is Counteracted by the Viral Protein ICPO. PLoS Pathogens, 2011, 7, e1002084.	4.7	108
14	Genetic analysis of BRCA1 ubiquitin ligase activity and its relationship to breast cancer susceptibility. Human Molecular Genetics, 2006, 15, 599-606.	2.9	96
15	PML Residue Lysine 160 Is Required for the Degradation of PML Induced by Herpes Simplex Virus Type 1 Regulatory Protein ICPO. Journal of Virology, 2003, 77, 8686-8694.	3.4	95
16	SUMO Pathway Dependent Recruitment of Cellular Repressors to Herpes Simplex Virus Type 1 Genomes. PLoS Pathogens, 2011, 7, e1002123.	4.7	92
17	A Systematic Analysis of Host Factors Reveals a Med23-Interferon-λ Regulatory Axis against Herpes Simplex Virus Type 1 Replication. PLoS Pathogens, 2013, 9, e1003514.	4.7	88
18	Herpes Simplex Virus Type 1 Induces CD83 Degradation in Mature Dendritic Cells with Immediate-Early Kinetics via the Cellular Proteasome. Journal of Virology, 2007, 81, 6326-6338.	3.4	73

CHRIS BOUTELL

#	Article	IF	CITATIONS
19	Comparison of the Biological and Biochemical Activities of Several Members of the Alphaherpesvirus ICPO Family of Proteins. Journal of Virology, 2010, 84, 3476-3487.	3.4	69
20	Viral E3ÂUbiquitin Ligase-Mediated Degradation of a Cellular E3: Viral Mimicry of a Cellular Phosphorylation Mark Targets the RNF8 FHA Domain. Molecular Cell, 2012, 46, 79-90.	9.7	69
21	Distinct temporal roles for the promyelocytic leukaemia (PML) protein in the sequential regulation of intracellular host immunity to HSV-1 infection. PLoS Pathogens, 2018, 14, e1006769.	4.7	67
22	The HSV-1 ubiquitin ligase ICP0: Modifying the cellular proteome to promote infection. Virus Research, 2020, 285, 198015.	2.2	54
23	The histone chaperone HIRA promotes the induction of host innate immune defences in response to HSV-1 infection. PLoS Pathogens, 2019, 15, e1007667.	4.7	47
24	HSV-1 ICPO: paving the way for viral replication. Future Virology, 2011, 6, 421-429.	1.8	45
25	SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1. Journal of Virology, 2016, 90, 5939-5952.	3.4	45
26	Proteomic analysis of cells in the early stages of herpes simplex virus typeâ€1 infection reveals widespread changes in the host cell proteome. Proteomics, 2009, 9, 3913-3927.	2.2	43
27	The homeodomain-interacting kinase PKM (HIPK-2) modifies ND10 through both its kinase domain and a SUMO-1 interaction motif and alters the posttranslational modification of PML. Experimental Cell Research, 2003, 283, 36-50.	2.6	39
28	Herpes Simplex Virus Type 1 Infection Induces the Stabilization of p53 in a USP7- and ATM-Independent Manner. Journal of Virology, 2004, 78, 8068-8077.	3.4	38
29	Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response. Journal of Virology, 2016, 90, 4807-4826.	3.4	31
30	Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. ELife, 2020, 9, .	6.0	28
31	Comparative proteomics identifies Schlafen 5 (SLFN5) as a herpes simplex virus restriction factor that suppresses viral transcription. Nature Microbiology, 2021, 6, 234-245.	13.3	27
32	Herpes Simplex Virus Type 1 ICPO Phosphorylation Mutants Impair the E3 Ubiquitin Ligase Activity of ICPO in a Cell Type-Dependent Manner. Journal of Virology, 2008, 82, 10647-10656.	3.4	26
33	Functional Characterization of Residues Required for the Herpes Simplex Virus 1 E3 Ubiquitin Ligase ICPO To Interact with the Cellular E2 Ubiquitin-Conjugating Enzyme UBE2D1 (UbcH5a). Journal of Virology, 2012, 86, 6323-6333.	3.4	26
34	Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independently of IFN-mediated innate immune defenses. PLoS Biology, 2021, 19, e3001065.	5.6	26
35	Sequences Related to SUMO Interaction Motifs in Herpes Simplex Virus 1 Protein ICPO Act Cooperatively To Stimulate Virus Infection. Journal of Virology, 2014, 88, 2763-2774.	3.4	22
36	PMLâ€NBâ€dependent type l interferon memory results in a restricted form of HSV latency. EMBO Reports, 2021, 22, e52547.	4.5	22

CHRIS BOUTELL

#	Article	IF	CITATIONS
37	Identification of a novel higher molecular weight isoform of USP7/HAUSP that interacts with the Herpes simplex virus type-1 immediate early protein ICP0. Virus Research, 2008, 137, 64-71.	2.2	15
38	Depletion of Intracellular Zinc Inhibits the Ubiquitin Ligase Activity of Viral Regulatory Protein ICP0 and Restricts Herpes Simplex Virus 1 Replication in Cell Culture. Journal of Virology, 2012, 86, 4029-4033.	3.4	13
39	A quantitative assay to monitor HSV-1 ICPO ubiquitin ligase activity in vitro. Methods, 2015, 90, 3-7.	3.8	7
40	The SUMOylation pathway suppresses arbovirus replication in Aedes aegypti cells. PLoS Pathogens, 2020, 16, e1009134.	4.7	7
41	Constitutive TRIM22 Expression in the Respiratory Tract Confers a Pre-Existing Defence Against Influenza A Virus Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 689707.	3.9	6