Mingyuan Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3818053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interplay between Interferon-Mediated Innate Immunity and Porcine Reproductive and Respiratory Syndrome Virus. Viruses, 2012, 4, 424-446.	3.3	149
2	The Innate Cytokines IL-25, IL-33, and TSLP Cooperate in the Induction of Type 2 Innate Lymphoid Cell Expansion and Mucous Metaplasia in Rhinovirus-Infected Immature Mice. Journal of Immunology, 2017, 199, 1308-1318.	0.8	114
3	Degradation of CREB-binding protein and modulation of type I interferon induction by the zinc finger motif of the porcine reproductive and respiratory syndrome virus nsp1α subunit. Virus Research, 2013, 172, 54-65.	2.2	53
4	Engineering the PRRS virus genome: Updates and perspectives. Veterinary Microbiology, 2014, 174, 279-295.	1.9	50
5	IFN-Î ³ Blocks Development of an Asthma Phenotype in Rhinovirus-Infected Baby Mice by Inhibiting Type 2 Innate Lymphoid Cells. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 242-251.	2.9	45
6	Toll-like receptor 2–expressing macrophages are required and sufficient for rhinovirus-induced airway inflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 1619-1630.	2.9	41
7	RORα-dependent type 2 innate lymphoid cells are required and sufficient for mucous metaplasia in immature mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L983-L993.	2.9	32
8	Modulation of innate immune signaling by nonstructural protein 1 (nsp1) in the family Arteriviridae. Virus Research, 2014, 194, 100-109.	2.2	31
9	Inflammasome activation is required for human rhinovirus-induced airway inflammation in naive and allergen-sensitized mice. Mucosal Immunology, 2019, 12, 958-968.	6.0	30
10	Small Animal Models of Respiratory Viral Infection Related to Asthma. Viruses, 2018, 10, 682.	3.3	23
11	Enterovirus D68 infection induces IL-17–dependent neutrophilic airway inflammation and hyperresponsiveness. JCI Insight, 2018, 3, .	5.0	23
12	Biogenesis of non-structural protein 1 (nsp1) and nsp1-mediated type I interferon modulation in arteriviruses. Virology, 2014, 458-459, 136-150.	2.4	21
13	Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus. Virology, 2017, 505, 42-55.	2.4	21
14	Rhinovirus C Infection Induces Type 2 Innate Lymphoid Cell Expansion and Eosinophilic Airway Inflammation. Frontiers in Immunology, 2021, 12, 649520.	4.8	20
15	Early-life heterologous rhinovirus infections induce an exaggerated asthma-like phenotype. Journal of Allergy and Clinical Immunology, 2020, 146, 571-582.e3.	2.9	19
16	Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 1 Beta Interacts with Nucleoporin 62 To Promote Viral Replication and Immune Evasion. Journal of Virology, 2019, 93, .	3.4	17
17	ILâ€1β prevents ILC2 expansion, type 2 cytokine secretion, and mucus metaplasia in response to earlyâ€life rhinovirus infection in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2005-2019.	5.7	17
18	Type I interferon suppression-negative and host mRNA nuclear retention-negative mutation in nsp1l ² confers attenuation of porcine reproductive and respiratory syndrome virus in pigs. Virology, 2018, 517, 177-187.	2.4	15

Mingyuan Han

#	Article	IF	CITATIONS
19	Equine Arteritis Virus Does Not Induce Interferon Production in Equine Endothelial Cells: Identification of Nonstructural Protein 1 as a Main Interferon Antagonist. BioMed Research International, 2014, 2014, 1-13.	1.9	14
20	Myristoylated rhinovirus VP4 protein activates TLR2-dependent proinflammatory gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L57-L70.	2.9	11
21	Reverse Genetics for Porcine Reproductive and Respiratory Syndrome Virus. Methods in Molecular Biology, 2017, 1602, 29-46.	0.9	9
22	Construction of a recombinant rhinovirus accommodating fluorescent marker expression. Influenza and Other Respiratory Viruses, 2018, 12, 717-727.	3.4	8
23	Rhinovirus Attributes that Contribute to Asthma Development. Immunology and Allergy Clinics of North America, 2019, 39, 345-359.	1.9	7
24	Deficient inflammasome activation permits an exaggerated asthma phenotype in rhinovirus C-infected immature mice. Mucosal Immunology, 2021, 14, 1369-1380.	6.0	5