H M Zakir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3817966/publications.pdf

Version: 2024-02-01

	687220	477173
948	13	29
citations	h-index	g-index
52	52	998
docs citations	times ranked	citing authors
	citations 52	948 13 citations h-index 52 52

#	Article	IF	CITATIONS
1	Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. International Journal of Environmental Science and Technology, 2010, 7, 17-28.	1.8	183
2	Heavy metals contamination in water and sediments of an urban river in a developing country. International Journal of Environmental Science and Technology, 2011, 8, 723-736.	1.8	170
3	Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: a case study of Jamalpur Sadar area, Bangladesh. Environmental Advances, 2020, 2, 100005.	2.2	92
4	Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan. Environmental Geochemistry and Health, 2012, 34, 13-26.	1.8	90
5	Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza) Tj ETQq1 1 0.	784314 rg 1.4	gBT /Overloc
6	Human Health Risk Assessment of Heavy Metals Through the Consumption of Common Foodstuffs Collected from Two Divisional Cities of Bangladesh. Exposure and Health, 2021, 13, 253-268.	2.8	30
7	Zinc contamination in river water and sediments at Taisyu Zn–Pb mine area, Tsushima Island, Japan. Journal of Geochemical Exploration, 2008, 98, 80-88.	1.5	25
8	Geochemical Distribution of Trace Metals and Assessment of Anthropogenic Pollution in Sediments of Old Nakagawa River, Tokyo, Japan. American Journal of Environmental Sciences, 2008, 4, 654-665.	0.3	25
9	Sulphur and Boron Fertilization on Yield Quality and Nutrient Uptake by Bangladesh Soybean-4. Journal of Biological Sciences, 2002, 2, 729-733.	0.1	25
10	Light emitting diodes increase phenolics of buckwheat (Fagopyrum esculentum) sprouts. Journal of Plant Interactions, 2007, 2, 71-78.	1.0	24
11	Hydrogeochemistry and heavy metal contamination in groundwaters of Dhaka metropolitan city, Bangladesh: Assessment of human health impact. HydroResearch, 2020, 3, 106-117.	1.7	18
12	Heavy Metals and Major Ionic Pollution Assessment in Waters of Midstream of the River Karatoa in Bangladesh. Journal of Environmental Science and Natural Resources, 2013, 5, 149-160.	0.1	17
13	Health Risk Assessment for Population via Consumption of Vegetables Grown in Soils Artificially Contaminated with Arsenic. Archives of Current Research International, 2017, 10, 1-12.	0.2	15
14	METAL FRACTIONATION IN SEDIMENTS: A COMPARATIVE ASSESSMENT OF FOUR SEQUENTIAL EXTRACTION SCHEMES. Journal of Environmental Science for Sustainable Society, 2008, 2, 1-12.	0.1	14
15	Heavy Metal and Major Ionic Contamination Level in Effluents, Surface and Groundwater of an Urban Industrialised City: A Case Study of Rangpur City, Bangladesh. Asian Journal of Chemical Sciences, 2018, 5, 1-16.	0.4	12
16	Heavy Metal Contents in Sediments of an Urban Industrialized Areaâ€"A Case Study of Tongi Canal, Bangladesh. Asian Journal of Water, Environment and Pollution, 2017, 14, 59-68.	0.4	11
17	Assessment of Metallic Pollution along with Geochemical Baseline of Soils at Barapukuria Open Coal Mine Area in Dinajpur, Bangladesh. Asian Journal of Water, Environment and Pollution, 2017, 14, 77-88.	0.4	11
18	Impact of urbanization and industrialization on irrigation water quality of a canal - a case study of Tongi canal, Bangladesh. Advances in Environmental Research, 2016, 5, 109-123.	0.3	11

#	Article	IF	CITATIONS
19	Quality and Metallic Pollution Level in Surface Waters of an Urban Industrialized City: A Case Study of Chittagong City, Bangladesh. Journal of Industrial Safety Engineering, 0, , 9-18.	0.0	11
20	Influence of Commercially Available Organic vs Inorganic Fertilizers on Growth Yield and Quality of Carrot. Journal of Environmental Science and Natural Resources, 2012, 5, 39-45.	0.1	10
21	Heavy Metals and Major Nutrients Accumulation Pattern in Spinach Grown in Farm and Industrial Contaminated Soils and Health Risk Assessment. Archives of Agriculture and Environmental Science, 2018, 3, 95-102.	0.2	9
22	Impact of Industrial Wastewater Irrigation on Heavy Metal Deposition in Farm Soils of Bhaluka Area, Bangladesh. Journal of Geography Environment and Earth Science International, 0, , 19-31.	0.2	9
23	Spatial Dissemination of Some Heavy Metals in Soil Adjacent to <i>Bhaluka</i> Industrial Area, Mymensingh, Bangladesh. American Journal of Applied Scientific Research, 2016, 2, 38.	0.1	8
24	Arsenic contamination in surface and groundwater in major parts of Manikganj district, Bangladesh. Journal of the Bangladesh Agricultural University, 2016, 13, 47-54.	0.1	7
25	Heavy Metal Bioaccumulation Pattern in Edible Tissues of Different Farmed Fishes of Mymensingh Area, Bangladesh and Health Risk Assessment. Advances in Research, 0, , 44-55.	0.3	7
26	Heavy Metal Uptake Pattern and Potential Human Health Risk through Consumption of Tomato Grown in Industrial Contaminated Soils. Asian Journal of Advances in Agricultural Research, 2018, 5, 1-11.	0.2	7
27	Effects of different application methods of chitosan on growth, yield and quality of tomato (Lycopersicon esculentum Mill.). Archives of Agriculture and Environmental Science, 2019, 4, 261-267.	0.2	6
28	Phytoremediation of Chromium and some chemical parameters from Tannery effluent by using water Hyacinth (Eichhornia craassipes). Research in Agriculture, Livestock and Fisheries, 2017, 4, 151-156.	0.1	5
29	Metallic Health Risk through Consumption of Different Rice Varieties Cultivated in Industrial Wastewater Irrigated Farmers' Fields of Bhaluka Area, Bangladesh. Current Journal of Applied Science and Technology, 0, , 76-91.	0.3	5
30	Health Risk Assessment of Heavy Metal Intake of Common Fishes Available in the Brahmaputra River of Bangladesh. Archives of Current Research International, 0, , 1-15.	0.2	4
31	Industrialisation Scenario at Sreepur of Gazipur, Bangladesh and Physico-chemical Properties of Wastewater Discharged from Industries. Asian Journal of Environment & Ecology, 0, , 1-14.	0.2	4
32	Human health exposure and risks of arsenic from contaminated soils and brinjal fruits collected from different producers and retailers levels. Environmental Geochemistry and Health, 2022, 44, 4665-4683.	1.8	4
33	Contamination Level of Different Chemical Elements in Top Soils of Barapukuria Coal Mine Area in Dinajpur, Bangladesh. Asian Journal of Water, Environment and Pollution, 2020, 17, 59-73.	0.4	3
34	Nutritional Quality and Metallic Health Risk Assessment of Industrially Processed Tomato Ketchups Available in the Markets of Bangladesh. European Journal of Nutrition & Food Safety, 0, , 67-78.	0.2	3
35	Rare Earth Elements and Geochemical Partitioning of Zn and Pb in Sediments of an Urban River. American Journal of Environmental Sciences, 2010, 6, 406-415.	0.3	2
36	Impact of wastewater irrigation on major nutrient status in soil near Bhaluka industrial area of Bangladesh. Asian Journal of Medical and Biological Research, 2016, 2, 131-137.	0.1	2

#	Article	IF	CITATIONS
37	Physicochemical Properties and Metallic Constituent Load in the Water Samples of the Buriganga of Bangladesh. Journal of Environmental Science and Natural Resources, 2016, 8, 141-146.	0.1	2
38	Appraisal of surface water quality for irrigation collected from Sadar upazila of Jamalpur district, Bangladesh. Archives of Agriculture and Environmental Science, 2018, 3, 216-225.	0.2	2
39	Plant and Animal Residue Decomposition and Transformation of S and P in Soil. Pakistan Journal of Biological Sciences, 2002, 5, 736-739.	0.2	2
40	Metallic Pollution Level in Soils of Mymensingh Town, Bangladesh: An Impact of Urbanization and Industrialization. Journal of Industrial Safety Engineering, 0, , 17-25.	0.0	2
41	Effect of Chitosan Coating on Physiological Responses and Nutritional Qualities of Tomato Fruits during Postharvest Storage. Asian Journal of Advances in Agricultural Research, 0, , 1-11.	0.2	2
42	Protein and Mineral Contents in Some Fish Species Available in the Brahmaputra River of Bangladesh. European Journal of Nutrition & Food Safety, 0, , 14-27.	0.2	2
43	Evaluation of groundwater quality with special emphasis on heavy metal contamination in major areas of Joypurhat district, Bangladesh. Journal of Chemical, Biological, and Physical Sciences, 2017, 7,	0.5	1
44	Groundwater Quality Evaluation for Irrigation and Drinking Utilities Collected from Sadar Upazila of Jamalpur District, Bangladesh. Asian Journal of Applied Chemistry Research, 0, , 1-13.	0.0	1
45	Zinc Pollution Level in Sediments of Old Nakagawa River, Tokyo, Japan. AIP Conference Proceedings, 2008, , .	0.3	0
46	Assessment of Metal Pollution in Lower Torag River in Bangladesh. AIP Conference Proceedings, 2008,	0.3	0
47	Screening and isolation of arsenic tolerant Rhizobacteria from arsenic contaminated areas of Bangladesh. Progressive Agriculture, 2019, 30, 17-25.	0.4	0
48	Glucose and Cellulose Decomposition and Subsequent Transformation of S and P in Soil. Journal of Biological Sciences, 2002, 2, 459-462.	0.1	0
49	Optimization of Zinc and Boron Levels for Better Growth and Yield of Tomato (Lycopersicon) Tj ETQq $1\ 1\ 0.7843$	14 rgBT /C	Overlock 10