Kazuyoshi Takimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3817561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clay Column Chromatography for Optical Resolution: A Series of Derivatized Amino Acids. Bulletin of the Chemical Society of Japan, 2022, 95, 961-967.	2.0	1
2	Vibrational Circular Dichroism Spectroscopy toward Intercalation Compounds of Sodium Montmorillonite: Evidences for Molecular Packing of Enantiopure Monovalent Ir(III) Complexes within Interlayer Spaces. Applied Clay Science, 2022, 228, 106621.	2.6	3
3	Five-coordinate iridium(<scp>iii</scp>) complex with Δĥ chirality. Dalton Transactions, 2021, 50, 13256-13263.	1.6	4
4	Effects of geometrical isomerism on emissive behaviour of heteroleptic cyclometalated Ir(iii) complexes. Dalton Transactions, 2021, 50, 8506-8511.	1.6	0
5	Stereoselective Enhancement of VCD Signals for Intercalation Compounds of Sodium Montmorillonite and Chiral Metal Complexes. Bulletin of the Chemical Society of Japan, 2021, 94, 1731-1736.	2.0	4
6	Solid-state Vibrational Circular Dichroism as Applied for Heterogenous Asymmetric Catalysis: Copper(II) Complexes Immobilized in Montmorillonite. Chemistry Letters, 2021, 50, 896-898.	0.7	5
7	Estimation of Enantiomeric Excess Based on Rapid Host–Guest Exchange. Chemosensors, 2021, 9, 259.	1.8	3
8	Chiral Discrimination of Dansylated Alanine Methyl Ester on a Modified Clay Surface: Vibrational Circular Dichroism Approach. Bulletin of the Chemical Society of Japan, 2021, 94, 2711-2717.	2.0	4
9	Enantiomeric Excess Dependent Splitting of NMR Signal through Dynamic Chiral Inversion and Coligand Exchange in a Coordination Complex. Journal of Physical Chemistry Letters, 2020, 11, 8164-8169.	2.1	4
10	Vibrational circular dichroism towards asymmetric catalysis: chiral induction in substrates coordinated with copper(<scp>ii</scp>) ions. Physical Chemistry Chemical Physics, 2020, 22, 24393-24398.	1.3	3
11	Real-Time Monitoring of Low Pressure Oxygen Molecules over Wide Temperature Range: Feasibility of Ultrathin Hybrid Films of Iridium(III) Complexes and Clay Nanosheets. Bulletin of the Chemical Society of Japan, 2020, 93, 194-199.	2.0	6
12	Application of Solid-State Vibrational Circular Dichroism for Intercalation Compounds of Layered Double Hydroxide and Amino Acids: Conformation of an Intercalated Phenylalanine. Bulletin of the Chemical Society of Japan, 2019, 92, 1779-1784.	2.0	9
13	Microscopic chiral pockets in a tris(chelated) iridium(<scp>iii</scp>) complex as sites for dynamic enantioselective quenching. New Journal of Chemistry, 2018, 42, 4818-4823.	1.4	7
14	Solid state vibrational circular dichroism towards molecular recognition: chiral metal complexes intercalated in a clay mineral. Physical Chemistry Chemical Physics, 2018, 20, 3141-3147.	1.3	25
15	Stereoselective interactions as manifested by vibrational circular dichroism spectra: the interplay between chiral metal complexes co-adsorbed in a montmorillonite clay. Physical Chemistry Chemical Physics, 2018, 20, 25421-25427.	1.3	10
16	Vibrational circular dichroism and single crystal X-Ray diffraction analyses of [Ir(bzq) ₂ (phen)] ⁺ (bzq = benzo[h]quinoline; phen = 1,10-phenanthroline): absolute configuration and role of CH–l€ interaction in molecular packing. Dalton Transactions, 2017, 46, 4397-4402.	1.6	17