Marja Lajunen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3817499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectroscopic study of natural and synthetic polysaccharide sulfate structures. Starch/Staerke, 2016, 68, 854-863.	2.1	13
2	Binding of some heavy metal ions in aqueous solution with cationized or sulphonylated starch or waste starch. Starch/Staerke, 2016, 68, 900-908.	2.1	7
3	1H NMR-based DS determination of barley starch sulfates prepared in 1-allyl-3-methylimidazolium chloride. Carbohydrate Polymers, 2016, 136, 721-727.	10.2	11
4	Modification of potato peel waste with base hydrolysis and subsequent cationization. Carbohydrate Polymers, 2015, 132, 97-103.	10.2	14
5	Task-specific ionic liquid for the depolymerisation of starch-based industrial waste into high reducing sugars. Catalysis Today, 2014, 223, 11-17.	4.4	26
6	Water-soluble oxidized starch in complexation of Fe(III), Cu(II), Ni(II) and Zn(II) ions. Reactive and Functional Polymers, 2014, 83, 123-131.	4.1	9
7	Oxidation and degradation of native wheat starch by acidic bromate in water at room temperature. Carbohydrate Polymers, 2013, 93, 73-80.	10.2	41
8	Fast and efficient benign oxidation of native wheat starch by acidic bromate under microwave activation. Carbohydrate Research, 2013, 367, 58-62.	2.3	6
9	Complexation of Fe(III) with waterâ€soluble oxidized starch. Starch/Staerke, 2013, 65, 338-345.	2.1	16
10	Dissolution and depolymerization of barley starch in selected ionic liquids. Carbohydrate Polymers, 2013, 93, 89-94.	10.2	43
11	Room-Temperature Oxidation of Secondary Alcohols by Bromate–Bromide Coupling in Acidic Water. Synthetic Communications, 2012, 42, 534-540.	2.1	9
12	Direct functionalization of pristine single-walled carbon nanotubes by diazonium-based method with various five-membered S- or N- heteroaromatic amines. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	8
13	Preparation of waterâ€soluble starch oligomers from variable starch species in 1â€allylâ€3â€methylimidazolium chloride. Starch/Staerke, 2012, 64, 263-271.	2.1	13
14	Fascinating distinct reactivity of 3- or 2-aminopyridines with carbon nanotubes. Chemical Engineering Journal, 2011, 172, 557-563.	12.7	7
15	HPLC-ELSD analysis of six starch species heat-dispersed in [BMIM]Cl ionic liquid. Carbohydrate Polymers, 2011, 84, 509-516.	10.2	59
16	Water-soluble carbon nanotubes through sugar azide functionalization. Carbon, 2011, 49, 1299-1304.	10.3	25
17	Fast oxidation of secondary alcohols by the bromate-bromide system using cyclic microwave heating in acidic water. Tetrahedron Letters, 2010, 51, 6695-6699.	1.4	19
18	New nitrene functionalizations onto sidewalls of carbon nanotubes and their spectroscopic analysis. Carbon, 2010, 48, 2425-2434.	10.3	24

Marja Lajunen

#	Article	IF	CITATIONS
19	Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes. Small, 2006, 2, 1021-1025.	10.0	479
20	Hajos–Parrish ketone: approaches toward C-ring precursors of 7-deoxytaxol. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1439-1443.	1.3	7
21	NMR studies on aromatic compounds: Vl—13C NMR spectra of some mono- and disulphonato-substituted hydroxynaphthoic acids in DMSO-d6-water solution. Magnetic Resonance in Chemistry, 1983, 21, 154-155.	0.7	8