Ivan Rapaport

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3817496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compact Distributed Certification of Planar Graphs. Algorithmica, 2021, 83, 2215-2244.	1.0	7
2	Communication complexity meets cellular automata: Necessary conditions for intrinsic universality. Natural Computing, 2021, 20, 307-320.	1.8	0
3	The role of randomness in the broadcast congested clique model. Information and Computation, 2020, , 104669.	0.5	0
4	The Impact of Locality in the Broadcast Congested Clique Model. SIAM Journal on Discrete Mathematics, 2020, 34, 682-700.	0.4	3
5	Graph reconstruction in the congested clique. Journal of Computer and System Sciences, 2020, 113, 1-17.	0.9	4
6	The Impact of Locality on the Detection of Cycles in the Broadcast Congested Clique Model. Lecture Notes in Computer Science, 2018, , 134-145.	1.0	4
7	Robust reconstruction of BarabÃisi-Albert networks in the broadcast congested clique model. Networks, 2016, 67, 82-91.	1.6	1
8	Fixed-points in random Boolean networks: The impact of parallelism in the BarabÃisi–Albert scale-free topology case. BioSystems, 2016, 150, 167-176.	0.9	9
9	The Effect of Range and Bandwidth onÂtheÂRound Complexity in the Congested Clique Model. Lecture Notes in Computer Science, 2016, , 182-193.	1.0	2
10	Distributed Testing of Excluded Subgraphs. Lecture Notes in Computer Science, 2016, , 342-356.	1.0	12
11	Allowing each node to communicate only once in a distributed system: shared whiteboard models. Distributed Computing, 2015, 28, 189-200.	0.7	8
12	Solving the Induced Subgraph Problem in the Randomized Multiparty Simultaneous Messages Model. Lecture Notes in Computer Science, 2015, , 370-384.	1.0	11
13	Strict Majority Bootstrap Percolation in the r-wheel. Information Processing Letters, 2014, 114, 277-281.	0.4	3
14	The Simultaneous Number-in-Hand Communication Model for Networks: Private Coins, Public Coins and Determinism. Lecture Notes in Computer Science, 2014, , 83-95.	1.0	13
15	Solving the density classification problem with a large diffusion and small amplification cellular automaton. Physica D: Nonlinear Phenomena, 2013, 261, 70-80.	1.3	11
16	Discrete mathematical structures: From dynamics to complexity. Theoretical Computer Science, 2013, 504, 3-4.	0.5	0
17	Letting Alice and Bob choose which problem to solve: Implications to the study of cellular automata. Theoretical Computer Science, 2013, 468, 1-11.	0.5	4

Allowing each node to communicate only once in a distributed system. , 2012, , .

6

Ivan Rapaport

#	Article	IF	CITATIONS
19	Distributed computing of efficient routing schemes in generalized chordal graphs. Theoretical Computer Science, 2012, 444, 17-27.	0.5	5
20	Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters. Biotechnology and Bioengineering, 2012, 109, 2325-2339.	1.7	9
21	Adding a Referee to an Interconnection Network: What Can(not) Be Computed in One Round. , 2011, , .		20
22	On Dissemination Thresholds in Regular and Irregular Graph Classes. Algorithmica, 2011, 59, 16-34.	1.0	7
23	Communication complexity and intrinsic universality in cellular automata. Theoretical Computer Science, 2011, 412, 2-21.	0.5	25
24	Traced communication complexity of cellular automata. Theoretical Computer Science, 2011, 412, 3906-3916.	0.5	1
25	Communication complexity in number-conserving and monotone cellular automata. Theoretical Computer Science, 2011, 412, 3616-3628.	0.5	11
26	Average long-lived binary consensus: Quantifying the stabilizing role played by memory. Theoretical Computer Science, 2010, 411, 1558-1566.	0.5	3
27	Average Long-Lived Memoryless Consensus: The Three-Value Case. Lecture Notes in Computer Science, 2010, , 114-126.	1.0	3
28	Modeling heterocyst pattern formation in cyanobacteria. BMC Bioinformatics, 2009, 10, S16.	1.2	16
29	Minimal proper interval completions. Information Processing Letters, 2008, 106, 195-202.	0.4	10
30	Understanding a Non-trivial Cellular Automaton by Finding Its Simplest Underlying Communication Protocol. Lecture Notes in Computer Science, 2008, , 592-604.	1.0	8
31	Average Binary Long-Lived Consensus: Quantifying the Stabilizing Role Played by Memory. Lecture Notes in Computer Science, 2008, , 48-60.	1.0	3
32	Small Alliances in Graphs. Lecture Notes in Computer Science, 2007, , 218-227.	1.0	4
33	Predicting the behaviour of proteins in hydrophobic interaction chromatography. Journal of Chromatography A, 2006, 1107, 110-119.	1.8	40
34	Predicting the behaviour of proteins in hydrophobic interaction chromatography. Journal of Chromatography A, 2006, 1107, 120-129.	1.8	25
35	New approaches for predicting protein retention time in hydrophobic interaction chromatography. Journal of Molecular Recognition, 2006, 19, 260-269.	1.1	30
36	Self-assemblying Classes of Shapes with a Minimum Number of Tiles, and in Optimal Time. Lecture Notes in Computer Science, 2006, , 45-56.	1.0	26

Ivan Rapaport

#	Article	IF	CITATIONS
37	Is it possible to predict the average surface hydrophobicity of a protein using only its amino acid composition?. Journal of Chromatography A, 2005, 1075, 133-143.	1.8	27
38	Prediction of retention times of proteins in hydrophobic interaction chromatography using only their amino acid composition. Journal of Chromatography A, 2005, 1098, 44-54.	1.8	30
39	AT-free graphs: linear bounds for the oriented diameter. Discrete Applied Mathematics, 2004, 141, 135-148.	0.5	19
40	Complexity of approximating the oriented diameter of chordal graphs. Journal of Graph Theory, 2004, 45, 255-269.	0.5	21
41	Domino tilings and related models: space of configurations of domains with holes. Theoretical Computer Science, 2004, 319, 83-101.	0.5	4
42	Cellular automata and communication complexity. Theoretical Computer Science, 2004, 322, 355-368.	0.5	19
43	Tiling with bars under tomographic constraints. Theoretical Computer Science, 2003, 290, 1317-1329.	0.5	16
44	k-pseudosnakes in Large Grids. Lecture Notes in Computer Science, 2002, , 224-235.	1.0	1
45	Bilateral Orientations and Domination. Electronic Notes in Discrete Mathematics, 2001, 7, 26-29.	0.4	3
46	Tiling allowing rotations only. Theoretical Computer Science, 1999, 218, 285-295.	0.5	3
47	Inducing an order on cellular automata by a grouping operation. Discrete Applied Mathematics, 1999, 91, 177-196.	0.5	14
48	Global fixed point attractors of circular cellular automata and periodic tilings of the plane: Undecidability results. Discrete Mathematics, 1999, 199, 103-122.	0.4	12
49	Inducing an order on cellular automata by a grouping operation. Lecture Notes in Computer Science, 1998, , 116-127.	1.0	15
50	Complexity of tile rotation problems. Theoretical Computer Science, 1997, 188, 129-159.	0.5	4
51	Communications in cellular automata. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 1, 81-92.	0.8	3