Bernhard A Schmitt

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/381726/publications.pdf
Version: 2024-02-01

| 31 | |
| :---: | :---: | :---: | :---: | :---: |
| papers | |
| 32 | citations |
| all docs | |

Discrete adjoint implicit Peer methods in optimal control. Journal of Computational and Applied
Mathematics, 2022, 416, 114596. Mathematics, 2022, 416, 114596.

2
2

Krylov methods for adjointâ€free singular vector based perturbations in dynamical systems. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 225-239.

Efficient A-stable peer two-step methods. Journal of Computational and Applied Mathematics, 2017, 316, 319-329.

Rapid turnover of DnaA at replication origin regions contributes to initiation control of DNA replication. PLoS Genetics, 2017, 13, e1006561.

A model for spatio-temporal dynamics in a regulatory network for cell polarity. Mathematical
Biosciences, 2014, 258, 189-200.

Reprint of: Peer methods with improved embedded sensitivities for parameter-dependent ODEs. Journal of Computational and Applied Mathematics, 2014, 262, 25-36.
$2.0 \quad 0$

Peer methods with improved embedded sensitivities for parameter-dependent ODEs. Journal of
Computational and Applied Mathematics, 2014, 256, 242-253.

Dew drops on spider webs: A symmetry breaking bifurcation for a parabolic differential-algebraic equation. Journal of Computational and Applied Mathematics, 2013, 254, 99-115.
2.0

0
8
$9 \quad$ Two-step peer methods with continuous output. BIT Numerical Mathematics, 2013, 53, 717-739.
2.0

Peer Two-Step Methods with Embedded Sensitivity Approximation for Parameter-Dependent ODEs. SIAM Journal on Numerical Analysis, 2012, 50, 2182-2207.

> A Model of Oscillatory Protein Dynamics in Bacteria. Bulletin of Mathematical Biology, 2012, 74,

2183-2203.
1.9

4

12 Implicit peer methods for large stiff ODE systems. Journal of Applied Mathematics and Computing, 2012, 38, 389-406.
2.5

26

13 Parallel start for explicit parallel two-step peer methods. Numerical Algorithms, 2010, 53, 363-381.
1.9

8

14 Superconvergent explicit two-step peer methods. Journal of Computational and Applied Mathematics, 2009, 223, 753-764.
2.0

49

Explicit multi-step peer methods for special second-order differential equations. Applied Mathematics and Computation, 2008, 202, 803-813.

16 Explicit two-step peer methods. Computers and Mathematics With Applications, 2008, 55, 609-619.
2.7

46

Linearly-implicit two-step methods and their implementation in Nordsieck form. Applied Numerical
Mathematics, 2006, 56, 374-387.
2.1

17
34

Parallel $\hat{A^{\prime}}{ }^{\sim}$ Peerâ $€^{\text {TM }}$ two-step W-methods and their application toÂMOL-systems. Applied Numerical
21 Parallel Two-Step W-Methods with Peer Variables. SIAM Journal on Numerical Analysis, 2004, 42, 2.3 59
265-282.Mathematics, 2002, 42, 381-395.
23 Polynomial preconditioning in Krylov-ROW-methods. Applied Numerical Mathematics, 1998, 28, 427-437. $2.1 \quad 2$24 Order results for Krylov-W-methods. Computing (Vienna/New York), 1998, 61, 69-89.4.86
25 Equilibrium attractivity of Krylov-W-methods for nonlinear stiff ODEs. BIT Numerical Mathematics, 1998, 38, 391-414. 2.0 5
Matrix-free W-methods using a multiple Arnoldi iteration. Applied Numerical Mathematics, 1995, 18, 307-320.W-Methods with Automatic Partitioning by Krylov Techniques for Large Stiff Systems. SIAM Journal on$27 \quad$ Numerical Analysis, 1995, 32, 260-284.2.36Automatic
13, 41-55.2.120.919
29 Perturbation bounds for matrix square roots and pythagorean sums. Linear Algebra and ItsApplications, 1992, 174, 215-227.An Algebraic Approximation for the Matrix Exponential in Singularly Perturbed Boundary Value2.311Problems. SIAM Journal on Numerical Analysis, 1990, 27, 51-66.
Stability of implicit Runge-Kutta methods for nonlinear stiff differential equations. BIT Numerical2.0

