
Ilya V Okulov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3817201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 20-26.	5.6	225
2	Effect of Powder Particle Shape on the Properties of In Situ Ti–TiB Composite Materials Produced by Selective Laser Melting. Journal of Materials Science and Technology, 2015, 31, 1001-1005.	10.7	201
3	Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 866-871.	3.1	100
4	Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone. Scientific Reports, 2017, 7, 20.	3.3	84
5	Flash Joule heating for ductilization of metallic glasses. Nature Communications, 2015, 6, 7932.	12.8	66
6	High strength beta titanium alloys: New design approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 297-302.	5.6	65
7	Beating Thermal Coarsening in Nanoporous Materials via Highâ€Entropy Design. Advanced Materials, 2020, 32, e1906160.	21.0	61
8	Open porous dealloying-based biomaterials as a novel biomaterial platform. Materials Science and Engineering C, 2018, 88, 95-103.	7.3	60
9	Dealloying-based metal-polymer composites for biomedical applications. Scripta Materialia, 2018, 146, 290-294.	5.2	59
10	Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters. Scripta Materialia, 2018, 154, 68-72.	5.2	52
11	Selective laser melting of high-strength, low-modulus Ti–35Nb–7Zr–5Ta alloy. Materialia, 2020, 14, 100941.	2.7	48
12	Nanoporous magnesium. Nano Research, 2018, 11, 6428-6435.	10.4	46
13	Microstructural evolution and mechanical properties of bulk and porous low-cost Ti–Mo–Fe alloys produced by powder metallurgy. Journal of Alloys and Compounds, 2021, 853, 156768.	5.5	44
14	Effect of microstructure on the mechanical properties of as-cast Ti–Nb–Al–Cu–Ni alloys for biomedical application. Materials Science and Engineering C, 2013, 33, 4795-4801.	7.3	39
15	Significant tensile ductility and toughness in an ultrafine-structured Ti 68.8 Nb 13.6 Co 6 Cu 5.1 Al 6.5 bi-modal alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 615, 457-463.	5.6	35
16	Interfacial structure and wear properties of selective laser melted Ti/(TiC+TiN) composites with high content of reinforcements. Journal of Alloys and Compounds, 2021, 870, 159436.	5.5	35
17	Phase formation, microstructure and deformation behavior of heavily alloyed TiNb- and TiV-based titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 80-86.	5.6	32
18	Mechanical behavior and tensile/compressive strength asymmetry of ultrafine structured Ti–Nb–Ni–Co–Al alloys with bi-modal grain size distribution. Materials & Design, 2014, 62, 14-20.	5.1	24

Ιίνα ν Οκυίον

#	Article	IF	CITATIONS
19	Microstructure and mechanical properties of new composite structured Ti–V–Al–Cu–Ni alloys for spring applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 603, 76-83.	5.6	23
20	Micro-to-nano-scale deformation mechanism of a Ti-based dendritic-ultrafine eutectic alloy exhibiting large tensile ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 673-678.	5.6	23
21	Mechanical and Corrosion Behavior of New Generation Ti-45Nb Porous Alloys Implant Devices. Technologies, 2016, 4, 33.	5.1	22
22	Effect of boron on microstructure and mechanical properties of multicomponent titanium alloys. Materials Letters, 2015, 158, 111-114.	2.6	21
23	Deformation and fracture behavior of composite structured Ti-Nb-Al-Co(-Ni) alloys. Applied Physics Letters, 2014, 104, 071905.	3.3	20
24	Ti-Al Composite Wires with High Specific Strength. Metals, 2011, 1, 79-97.	2.3	18
25	Processing of Intermetallic Titanium Aluminide Wires. Metals, 2013, 3, 188-201.	2.3	15
26	Hardening of Additive Manufactured 316L Stainless Steel by Using Bimodal Powder Containing Nanoscale Fraction. Materials, 2021, 14, 115.	2.9	15
27	In situ studies of temperature-dependent behaviour and crystallisation of Ni36.5Pd36.5P27 metallic glass. Journal of Alloys and Compounds, 2014, 615, S208-S212.	5.5	13
28	Processing of High Strength Lightâ€Weight Metallic Composites. Advanced Engineering Materials, 2014, 16, 1208-1216.	3.5	12
29	Fabrication of Metastable Crystalline Nanocomposites by Flash Annealing of Cu47.5Zr47.5Al5 Metallic Glass Using Joule Heating. Nanomaterials, 2020, 10, 84.	4.1	10
30	Texture development in Ti/Al filament wires produced by accumulative swaging and bundling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 360-367.	5.6	8
31	Metallographic Preparation of Aluminium-Titanium Composites. Praktische Metallographie/Practical Metallography, 2013, 50, 739-753.	0.3	8
32	Modification of Mechanical Properties in Directed Energy Deposition by a Static Magnetic Field: Experimental and Theoretical Analysis. Materials, 2021, 14, 5190.	2.9	4
33	Nanoporous Materials: Beating Thermal Coarsening in Nanoporous Materials via Highâ€Entropy Design (Adv. Mater. 6/2020). Advanced Materials, 2020, 32, 2070044.	21.0	2
34	Electrochemical Behavior of Nanoporous Gold/Polypyrrole Supercapacitor under Deformation. Nanomaterials, 2022, 12, 2149.	4.1	2