Jin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/381707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of two-dimensional qualitative visualization method for isoflavones secreted from soybean roots using sheets with immobilized bovine serum albumin. Biosensors and Bioelectronics, 2022, 196, 113705.	10.1	2
2	A Versatile Terahertz Chemical Microscope and Its Application for the Detection of Histamine. Photonics, 2022, 9, 26.	2.0	4
3	Crack Detection for Welded Joint With Surface Coating Using Unsaturated AC Magnetic Flux Leakage. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	4
4	Rational Design of Peptides Derived from Odorant-Binding Proteins for SARS-CoV-2-Related Volatile Organic Compounds Recognition. Molecules, 2022, 27, 3917.	3.8	5
5	Design and validation of microfluidic parameters of a microfluidic chip using fluid dynamics. AlP Advances, 2021, 11, .	1.3	9
6	A Simple, Rapid and Low-cost 3-Aminopropyltriethoxysilane (APTES)-based Surface Plasmon Resonance Sensor for TNT Explosive Detection. Analytical Sciences, 2021, 37, 1029-1032.	1.6	5
7	Development of Impedance Measurement of Lithium Ion Batteries Electrode using Terahertz Chemical Microscope. IEEJ Transactions on Sensors and Micromachines, 2021, 141, 273-278.	0.1	2
8	Terahertz imaging technique for monitoring the flow of buffer solutions at different pH values through a microfluidic chip. Japanese Journal of Applied Physics, 2021, 60, 027003.	1.5	7
9	Investigation of Cross-Section Measurement Method for All-Solid-State Batteries Using Terahertz Chemical Microscopy. , 2021, , .		0
10	Development of Ion Concentration Measurement Method for Minute Volume of Blood Using Terahertz Chemical Microscope. , 2021, , .		0
11	Evaluation of Cosmetic Liquid Penetration Using Terahertz Time-of-Flight Method. , 2021, , .		0
12	Development of impedance measurement of lithium ion batteries electrode using terahertz chemical microscope. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2021, 214, e23355.	0.4	3
13	Visualization of Charge-Transfer Complex for the Detection of 2,4,6-Trinitrotoluene Using Terahertz Chemical Microscope. Journal of the Electrochemical Society, 2021, 168, 117517.	2.9	2
14	Detection of Lung Cancer Cells in Solutions Using a Terahertz Chemical Microscope. Sensors, 2021, 21, 7631.	3.8	7
15	Quartz Crystal Microbalance Sensor Based on Peptide Anchored Single-Walled Carbon Nanotubes for Highly Selective TNT Explosive Detection. , 2020, , .		3
16	Peptide-modified Microelectrode-based Potentiometric Device for 2,4,6-trinitrotoluene Molecule Detection. Sensors and Materials, 2019, 31, 2609.	0.5	1
17	Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection. Analytical Biochemistry, 2018, 550, 49-53.	2.4	21
18	Highly Selective Rational Design of Peptide-Based Surface Plasmon Resonance Sensor for Direct Determination of 2,4,6-trinitrotoluene (TNT) Explosive. Sensors and Actuators B: Chemical, 2018, 264, 279-284.	7.8	41

Jin Wang

#	Article	IF	CITATIONS
19	An SPR Sensor Chip Based on Peptide-Modified Single-Walled Carbon Nanotubes with Enhanced Sensitivity and Selectivity in the Detection of 2,4,6-Trinitrotoluene Explosives. Sensors, 2018, 18, 4461.	3.8	18
20	Array-Based Rational Design of Short Peptide Probe-Derived from an Anti-TNT Monoclonal Antibody. ACS Combinatorial Science, 2017, 19, 625-632.	3.8	29
21	Rational Design of Peptide-Functionalized Surface Plasmon Resonance Sensor for Specific Detection of TNT Explosive. Sensors, 2017, 17, 2249.	3.8	12
22	Microfluidic Device for Coulometric Detection of Organophosphate Pesticides. Analytical Sciences, 2015, 31, 591-595.	1.6	8
23	A micro IrO potentiometric sensor for direct determination of organophosphate pesticides. Sensors and Actuators B: Chemical, 2015, 220, 859-863.	7.8	24
24	Coulometric microdevice for organophosphate pesticide detection. Sensors and Actuators B: Chemical, 2014, 204, 297-301.	7.8	24