## D M Lawrence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3816911/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tundra vegetation change and impacts on permafrost. Nature Reviews Earth & Environment, 2022, 3, 68-84.                                                                                                                          | 12.2 | 87        |
| 2  | Tripling of western US particulate pollution from wildfires in a warming climate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111372119.                                       | 3.3  | 29        |
| 3  | Impacts of a revised surface roughness parameterization in the Community Land Model 5.1.<br>Geoscientific Model Development, 2022, 15, 2365-2393.                                                                                | 1.3  | 9         |
| 4  | Improvements in Wintertime Surface Temperature Variability in the Community Earth System Model<br>Version 2 (CESM2) Related to the Representation of Snow Density. Journal of Advances in Modeling<br>Earth Systems, 2022, 14, . | 1.3  | 1         |
| 5  | Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nature<br>Communications, 2022, 13, 1964.                                                                                             | 5.8  | 41        |
| 6  | Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States. Science Advances, 2022, 8, eabm8237.                                                                     | 4.7  | 11        |
| 7  | Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. Earth System Dynamics, 2022, 13, 885-909.                                                                           | 2.7  | 17        |
| 8  | Evaluating a reservoir parametrization in the vector-based global routing model mizuRoute (v2.0.1)<br>for Earth system model coupling. Geoscientific Model Development, 2022, 15, 4163-4192.                                     | 1.3  | 11        |
| 9  | Representing Intercell Lateral Groundwater Flow and Aquifer Pumping in the Community Land Model.<br>Water Resources Research, 2021, 57, .                                                                                        | 1.7  | 22        |
| 10 | Seasonal to multi-year soil moisture drought forecasting. Npj Climate and Atmospheric Science, 2021,<br>4, .                                                                                                                     | 2.6  | 30        |
| 11 | Impacts of Large-Scale Soil Moisture Anomalies on the Hydroclimate of Southeastern South America.<br>Journal of Hydrometeorology, 2021, 22, 657-669.                                                                             | 0.7  | 5         |
| 12 | Representation of Plant Hydraulics in the Noahâ€MP Land Surface Model: Model Development and<br>Multiscale Evaluation. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002214.                                   | 1.3  | 50        |
| 13 | Compatible Fossil Fuel CO2 Emissions in the CMIP6 Earth System Models' Historical and Shared<br>Socioeconomic Pathway Experiments of the Twenty-First Century. Journal of Climate, 2021, 34,<br>2853-2875.                       | 1.2  | 23        |
| 14 | Strong Local Evaporative Cooling Over Land Due to Atmospheric Aerosols. Journal of Advances in<br>Modeling Earth Systems, 2021, 13, e2021MS002491.                                                                               | 1.3  | 15        |
| 15 | Advances in Land Surface Modelling. Current Climate Change Reports, 2021, 7, 45-71.                                                                                                                                              | 2.8  | 43        |
| 16 | Simulating the Impact of Global Reservoir Expansion on the Presentâ€Day Climate. Journal of<br>Geophysical Research D: Atmospheres, 2021, 126, e2020JD034485.                                                                    | 1.2  | 9         |
| 17 | Coupled Climate Responses to Recent Australian Wildfire and COVIDâ€19 Emissions Anomalies Estimated in CESM2. Geophysical Research Letters, 2021, 48, e2021GL093841.                                                             | 1.5  | 19        |
| 18 | Worldwide Maize and Soybean Yield Response to Environmental and Management Factors Over the 20th and 21st Centuries. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006304.                                | 1.3  | 9         |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Developing a framework for an interdisciplinary and international climate intervention strategies research program. Bulletin of the American Meteorological Society, 2021, , 1-17.                                                    | 1.7 | 0         |
| 20 | Exposure to cold temperature affects the spring phenology of Alaskan deciduous vegetation types.<br>Environmental Research Letters, 2020, 15, 025006.                                                                                 | 2.2 | 6         |
| 21 | Full Implementation of Matrix Approach to Biogeochemistry Module of CLM5. Journal of Advances in<br>Modeling Earth Systems, 2020, 12, e2020MS002105.                                                                                  | 1.3 | 8         |
| 22 | Land Use and Land Cover Change Strongly Modulates Landâ€Atmosphere Coupling and Warmâ€Season<br>Precipitation Over the Central United States in CESM2â€VR. Journal of Advances in Modeling Earth<br>Systems, 2020, 12, e2019MS001925. | 1.3 | 11        |
| 23 | Simulating Agriculture in the Community Land Model Version 5. Journal of Geophysical Research G:<br>Biogeosciences, 2020, 125, e2019JG005529.                                                                                         | 1.3 | 53        |
| 24 | Global Heat Uptake by Inland Waters. Geophysical Research Letters, 2020, 47, e2020GL087867.                                                                                                                                           | 1.5 | 31        |
| 25 | The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth<br>Systems, 2020, 12, e2019MS001916.                                                                                                        | 1.3 | 935       |
| 26 | Observed changes in dry-season water availability attributed to human-induced climate change.<br>Nature Geoscience, 2020, 13, 477-481.                                                                                                | 5.4 | 132       |
| 27 | Soil moisture and hydrology projections of the permafrost region – a model intercomparison.<br>Cryosphere, 2020, 14, 445-459.                                                                                                         | 1.5 | 85        |
| 28 | Plant Growth Nullifies the Effect of Increased Waterâ€Use Efficiency on Streamflow Under Elevated CO<br>2 in the Southeastern United States. Geophysical Research Letters, 2020, 47, e2019GL086940.                                   | 1.5 | 13        |
| 29 | Warming of hot extremes alleviated by expanding irrigation. Nature Communications, 2020, 11, 290.                                                                                                                                     | 5.8 | 118       |
| 30 | Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 2020, 6, 338-348.                                                                                                              | 4.7 | 181       |
| 31 | Carbon release through abrupt permafrost thaw. Nature Geoscience, 2020, 13, 138-143.                                                                                                                                                  | 5.4 | 434       |
| 32 | Soil carbon sequestration simulated in CMIP6-LUMIP models: implications for climatic mitigation.<br>Environmental Research Letters, 2020, 15, 124061.                                                                                 | 2.2 | 35        |
| 33 | The GLACE-Hydrology Experiment: Effects of Land–Atmosphere Coupling on Soil Moisture Variability<br>and Predictability. Journal of Climate, 2020, 33, 6511-6529.                                                                      | 1.2 | 9         |
| 34 | A machine learning approach to emulation and biophysical parameter estimation with the Community<br>Land Model, version 5. Advances in Statistical Climatology, Meteorology and Oceanography, 2020, 6,<br>223-244.                    | 0.6 | 30        |
| 35 | Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 2020, 17, 4173-4222.                                                                                          | 1.3 | 255       |
| 36 | Global climate response to idealized deforestation in CMIP6 models. Biogeosciences, 2020, 17, 5615-5638.                                                                                                                              | 1.3 | 55        |

| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6.<br>Geoscientific Model Development, 2020, 13, 5425-5464.                                                                                                                   | 1.3  | 408       |
| 38 | Parametric Controls on Vegetation Responses to Biogeochemical Forcing in the CLM5. Journal of Advances in Modeling Earth Systems, 2019, 11, 2879-2895.                                                                                                                      | 1.3  | 69        |
| 39 | Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface<br>Modeling. Vadose Zone Journal, 2019, 18, 1-53.                                                                                                                               | 1.3  | 56        |
| 40 | Beyond Static Benchmarking: Using Experimental Manipulations to Evaluate Land Model Assumptions.<br>Global Biogeochemical Cycles, 2019, 33, 1289-1309.                                                                                                                      | 1.9  | 59        |
| 41 | High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2). Geophysical<br>Research Letters, 2019, 46, 8329-8337.                                                                                                                                       | 1.5  | 249       |
| 42 | The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems, 2019, 11, 4245-4287.                                                                                       | 1.3  | 692       |
| 43 | Representing Intrahillslope Lateral Subsurface Flow in the Community Land Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4044-4065.                                                                                                                        | 1.3  | 43        |
| 44 | Biomass heat storage dampens diurnal temperature variations in forests. Environmental Research<br>Letters, 2019, 14, 084026.                                                                                                                                                | 2.2  | 16        |
| 45 | Permafrost collapse is accelerating carbon release. Nature, 2019, 569, 32-34.                                                                                                                                                                                               | 13.7 | 237       |
| 46 | Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019, 565, 476-479.                                                                                                                                                                        | 13.7 | 409       |
| 47 | Model Structure and Climate Data Uncertainty in Historical Simulations of the Terrestrial Carbon<br>Cycle (1850–2014). Global Biogeochemical Cycles, 2019, 33, 1310-1326.                                                                                                   | 1.9  | 53        |
| 48 | The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Scientific Data, 2019, 6, 50.                                                                                                                                                                     | 2.4  | 57        |
| 49 | The Response of Permafrost and Highâ€Latitude Ecosystems Under Largeâ€Scale Stratospheric Aerosol<br>Injection and Its Termination. Earth's Future, 2019, 7, 605-614.                                                                                                       | 2.4  | 17        |
| 50 | Tracking Seasonal Fluctuations in Land Water Storage Using Global Models and GRACE Satellites.<br>Geophysical Research Letters, 2019, 46, 5254-5264.                                                                                                                        | 1.5  | 84        |
| 51 | The Impact of Biomass Heat Storage on the Canopy Energy Balance and Atmospheric Stability in the<br>Community Land Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 83-98.                                                                                   | 1.3  | 21        |
| 52 | Reconciling Canopy Interception Parameterization and Rainfall Forcing Frequency in the Community<br>Land Model for Simulating Evapotranspiration of Rainforests and Oil Palm Plantations in Indonesia.<br>Journal of Advances in Modeling Earth Systems, 2019, 11, 732-751. | 1.3  | 21        |
| 53 | Implementing Plant Hydraulics in the Community Land Model, Version 5. Journal of Advances in<br>Modeling Earth Systems, 2019, 11, 485-513.                                                                                                                                  | 1.3  | 213       |
| 54 | Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resources<br>Research, 2019, 55, 1737-1772.                                                                                                                                                  | 1.7  | 281       |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The potential to reduce uncertainty in regional runoff projections from climate models. Nature<br>Climate Change, 2019, 9, 926-933.                                                                                          | 8.1 | 75        |
| 56 | Ground subsidence effects on simulating dynamic high-latitude surface inundation under permafrost thaw using CLM5. Geoscientific Model Development, 2019, 12, 5291-5300.                                                     | 1.3 | 13        |
| 57 | Evaluating the Interplay Between Biophysical Processes and Leaf Area Changes in Land Surface Models.<br>Journal of Advances in Modeling Earth Systems, 2018, 10, 1102-1126.                                                  | 1.3 | 22        |
| 58 | Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories. Global and Planetary Change, 2018, 162, 18-27.                                                                        | 1.6 | 25        |
| 59 | Verification of Land–Atmosphere Coupling in Forecast Models, Reanalyses, and Land Surface Models<br>Using Flux Site Observations. Journal of Hydrometeorology, 2018, 19, 375-392.                                            | 0.7 | 66        |
| 60 | Improving maize growth processes in the community land model: Implementation and evaluation.<br>Agricultural and Forest Meteorology, 2018, 250-251, 64-89.                                                                   | 1.9 | 71        |
| 61 | A Comparison of the Diel Cycle of Modeled and Measured Latent Heat Flux During the Warm Season in<br>a Colorado Subalpine Forest. Journal of Advances in Modeling Earth Systems, 2018, 10, 617-651.                          | 1.3 | 19        |
| 62 | Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3882-3887. | 3.3 | 296       |
| 63 | Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change, 2018, 146, 547-560.                                                                    | 1.7 | 142       |
| 64 | Matrix approach to land carbon cycle modeling: A case study with the Community Land Model. Global<br>Change Biology, 2018, 24, 1394-1404.                                                                                    | 4.2 | 64        |
| 65 | The Benefits of Reduced Anthropogenic Climate changE (BRACE): a synthesis. Climatic Change, 2018, 146, 287-301.                                                                                                              | 1.7 | 27        |
| 66 | Utilizing SMAP Soil Moisture Data to Constrain Irrigation in the Community Land Model. Geophysical<br>Research Letters, 2018, 45, 12,892.                                                                                    | 1.5 | 33        |
| 67 | ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific<br>Model Development, 2018, 11, 5027-5049.                                                                                  | 1.3 | 119       |
| 68 | The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation.<br>Journal of Advances in Modeling Earth Systems, 2018, 10, 2731-2754.                                                         | 1.3 | 175       |
| 69 | Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environmental Research Letters, 2018, 13, 105002.                                                   | 2.2 | 31        |
| 70 | Cover Crops May Cause Winter Warming in Snowâ€Covered Regions. Geophysical Research Letters, 2018,<br>45, 9889-9897.                                                                                                         | 1.5 | 22        |
| 71 | Changes in Wood Biomass and Crop Yields in Response to Projected CO <sub>2</sub> , O <sub>3</sub> ,<br>Nitrogen Deposition, and Climate. Journal of Geophysical Research C: Biogeosciences, 2018, 123,<br>3262-3282.         | 1.3 | 15        |
| 72 | Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions. Cryosphere, 2018, 12, 123-144.                                                  | 1.5 | 46        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Global patterns of crop yield stability under additional nutrient and water inputs. PLoS ONE, 2018, 13, e0198748.                                                                                                              | 1.1 | 40        |
| 74 | Attributing the Carbon Cycle Impacts of CMIP5 Historical and Future Land Use and Land Cover Change<br>in the Community Earth System Model (CESM1). Journal of Geophysical Research G: Biogeosciences,<br>2018, 123, 1732-1755. | 1.3 | 20        |
| 75 | Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations. Earth System Science Data, 2018, 10, 1265-1279.                                  | 3.7 | 46        |
| 76 | Presentâ€day irrigation mitigates heat extremes. Journal of Geophysical Research D: Atmospheres, 2017,<br>122, 1403-1422.                                                                                                      | 1.2 | 194       |
| 77 | Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 430-446.           | 1.3 | 47        |
| 78 | Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environmental Research Letters, 2017, 12, 044014.                                               | 2.2 | 45        |
| 79 | Interactions between land use change and carbon cycle feedbacks. Global Biogeochemical Cycles, 2017, 31, 96-113.                                                                                                               | 1.9 | 46        |
| 80 | Role of Fire in the Global Land Water Budget during the Twentieth Century due to Changing<br>Ecosystems. Journal of Climate, 2017, 30, 1893-1908.                                                                              | 1.2 | 54        |
| 81 | Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature<br>Climate Change, 2017, 7, 817-822.                                                                                           | 8.1 | 195       |
| 82 | Sensitivities of Land Cover–Precipitation Feedback to Convective Triggering. Journal of<br>Hydrometeorology, 2017, 18, 2265-2283.                                                                                              | 0.7 | 12        |
| 83 | Representing subgrid convective initiation in the C ommunity E arth S ystem M odel. Journal of Advances in Modeling Earth Systems, 2017, 9, 1740-1758.                                                                         | 1.3 | 10        |
| 84 | Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications.<br>Geoscientific Model Development, 2017, 10, 1403-1422.                                                                            | 1.3 | 213       |
| 85 | Improving the Representation of Polar Snow and Firn in the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 2017, 9, 2583-2600.                                                                    | 1.3 | 78        |
| 86 | Process-level model evaluation: a snow and heat transfer metric. Cryosphere, 2017, 11, 989-996.                                                                                                                                | 1.5 | 34        |
| 87 | Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region. Cryosphere, 2016, 10, 1721-1737.                                                                 | 1.5 | 38        |
| 88 | Evaluating the strength of the land–atmosphere moisture feedback in Earth system models using satellite observations. Hydrology and Earth System Sciences, 2016, 20, 4837-4856.                                                | 1.9 | 36        |
| 89 | Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area. Cryosphere, 2016,<br>10, 287-306.                                                                                                             | 1.5 | 29        |
| 90 | LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison<br>Project – aims, setup and expected outcome. Geoscientific Model Development, 2016, 9, 2809-2832.                        | 1.3 | 152       |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geoscientific Model Development, 2016, 9, 2973-2998.                                                                        | 1.3 | 343       |
| 92  | Are GRACE-era Terrestrial Water Trends Driven by Anthropogenic Climate Change?. Advances in Meteorology, 2016, 2016, 1-9.                                                                                                                | 0.6 | 14        |
| 93  | Simulated high-latitude soil thermal dynamics during the past 4 decades. Cryosphere, 2016, 10, 179-192.                                                                                                                                  | 1.5 | 17        |
| 94  | Influence of landâ€atmosphere feedbacks on temperature and precipitation extremes in the GLACE MIP5 ensemble. Journal of Geophysical Research D: Atmospheres, 2016, 121, 607-623.                                                        | 1.2 | 102       |
| 95  | Assessing the use of subgrid land model output to study impacts of land cover change. Journal of<br>Geophysical Research D: Atmospheres, 2016, 121, 6133-6147.                                                                           | 1.2 | 57        |
| 96  | Implementing and Evaluating Variable Soil Thickness in the Community Land Model, Version 4.5 (CLM4.5). Journal of Climate, 2016, 29, 3441-3461.                                                                                          | 1.2 | 49        |
| 97  | Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles, 2016, 30, 1015-1037.                                              | 1.9 | 116       |
| 98  | Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and future challenges. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 540-566.                                            | 1.3 | 79        |
| 99  | Diagnostic evaluation of the Community Earth System Model in simulating mineral dust emission with<br>insight into large-scale dust storm mobilization in the Middle East and North Africa (MENA). Aeolian<br>Research, 2016, 21, 21-35. | 1.1 | 24        |
| 100 | Detecting regional patterns of changing CO <sub>2</sub> flux in Alaska. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7733-7738.                                                           | 3.3 | 33        |
| 101 | Terrestrial contribution to the heterogeneity in hydrological changes under global warming. Water<br>Resources Research, 2016, 52, 3127-3142.                                                                                            | 1.7 | 60        |
| 102 | Confronting Weather and Climate Models with Observational Data from Soil Moisture Networks over the United States. Journal of Hydrometeorology, 2016, 17, 1049-1067.                                                                     | 0.7 | 83        |
| 103 | A <scp>GRACE</scp> â€based assessment of interannual groundwater dynamics in the<br><scp>C</scp> ommunity <scp>L</scp> and <scp>M</scp> odel. Water Resources Research, 2015, 51,<br>8817-8833.                                          | 1.7 | 57        |
| 104 | Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land. Geophysical Research Letters, 2015, 42, 10,867.                                                                | 1.5 | 58        |
| 105 | Improving the representation of hydrologic processes in Earth System Models. Water Resources Research, 2015, 51, 5929-5956.                                                                                                              | 1.7 | 366       |
| 106 | Assessment of model estimates of land-atmosphere CO <sub>2</sub><br>exchange across Northern Eurasia. Biogeosciences, 2015, 12, 4385-4405.                                                                                               | 1.3 | 25        |
| 107 | Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geoscientific Model Development, 2015, 8, 3593-3619.                                                                 | 1.3 | 192       |
| 108 | Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environmental Research Letters, 2015, 10, 044016.                                                                     | 2.2 | 109       |

| #   | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Permafrost carbonâ^'climate feedback is sensitive to deep soil carbon decomposability but not deep soil<br>nitrogen dynamics. Proceedings of the National Academy of Sciences of the United States of America,<br>2015, 112, 3752-3757.                         | 3.3  | 233       |
| 110 | Climate change and the permafrost carbon feedback. Nature, 2015, 520, 171-179.                                                                                                                                                                                  | 13.7 | 2,369     |
| 111 | The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for<br>Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the American<br>Meteorological Society, 2015, 96, 1333-1349.                   | 1.7  | 1,723     |
| 112 | A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback.<br>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373,<br>20140423.                                                   | 1.6  | 149       |
| 113 | Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO<br><sub>2</sub> and CH <sub>4</sub> emissions. Environmental Research Letters, 2015, 10, 094011.                                                                        | 2.2  | 208       |
| 114 | Interannual Coupling between Summertime Surface Temperature and Precipitation over Land:<br>Processes and Implications for Climate Change*. Journal of Climate, 2015, 28, 1308-1328.                                                                            | 1.2  | 135       |
| 115 | Effects of excess ground ice on projections of permafrost in a warming climate. Environmental<br>Research Letters, 2014, 9, 124006.                                                                                                                             | 2.2  | 71        |
| 116 | A new synoptic scale resolving global climate simulation using the Community Earth System Model.<br>Journal of Advances in Modeling Earth Systems, 2014, 6, 1065-1094.                                                                                          | 1.3  | 262       |
| 117 | Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC). Journal of Climate, 2014, 27, 8981-9005.                                                                                                           | 1.2  | 156       |
| 118 | Assessing a dry surface layerâ€based soil resistance parameterization for the Community Land Model<br>using GRACE and FLUXNETâ€MTE data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,299.                                                     | 1.2  | 107       |
| 119 | Effects of realistic land surface initializations on subseasonal to seasonal soil moisture and<br>temperature predictability in North America and in changing climate simulated by CCSM4. Journal of<br>Geophysical Research D: Atmospheres, 2014, 119, 13,250. | 1.2  | 13        |
| 120 | Less reliable water availability in the 21st century climate projections. Earth's Future, 2014, 2, 152-160.                                                                                                                                                     | 2.4  | 59        |
| 121 | Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 2013, 119, 359-374.                                                                                                                                                 | 1.7  | 257       |
| 122 | Spin-up processes in the Community Land Model version 4 with explicit carbon and nitrogen components. Ecological Modelling, 2013, 263, 308-325.                                                                                                                 | 1.2  | 27        |
| 123 | The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 2013, 94, 1339-1360.                                                                                                                 | 1.7  | 1,848     |
| 124 | How Important is Vegetation Phenology for European Climate and Heat Waves?. Journal of Climate, 2013, 26, 10077-10100.                                                                                                                                          | 1.2  | 29        |
| 125 | Climate Change Projections in CESM1(CAM5) Compared to CCSM4. Journal of Climate, 2013, 26, 6287-6308.                                                                                                                                                           | 1.2  | 243       |
| 126 | Impact of soil moistureâ€climate feedbacks on CMIP5 projections: First results from the GLACEâ€CMIP5 experiment. Geophysical Research Letters, 2013, 40, 5212-5217.                                                                                             | 1.5  | 314       |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM).<br>Geoscientific Model Development, 2013, 6, 301-325.                                                                            | 1.3 | 207       |
| 128 | Implementation and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model. Journal of Climate, 2013, 26, 7352-7371.                                                             | 1.2 | 89        |
| 129 | Projected Future Changes in Vegetation in Western North America in the Twenty-First Century.<br>Journal of Climate, 2013, 26, 3671-3687.                                                                                 | 1.2 | 81        |
| 130 | Effects of Soil Moisture on the Responses of Soil Temperatures to Climate Change in Cold Regions*.<br>Journal of Climate, 2013, 26, 3139-3158.                                                                           | 1.2 | 68        |
| 131 | Diagnosing Present and Future Permafrost from Climate Models. Journal of Climate, 2013, 26, 5608-5623.                                                                                                                   | 1.2 | 258       |
| 132 | The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences, 2013, 10, 7109-7131.                                                                     | 1.3 | 359       |
| 133 | Simulation of Present-Day and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4. Journal of Climate, 2012, 25, 2207-2225.                                                                               | 1.2 | 207       |
| 134 | Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood<br>Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. Journal of Climate, 2012,<br>25, 3071-3095. | 1.2 | 255       |
| 135 | On the influence of shrub height and expansion on northern high latitude climate. Environmental<br>Research Letters, 2012, 7, 015503.                                                                                    | 2.2 | 140       |
| 136 | Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community<br>Land Model. Journal of Advances in Modeling Earth Systems, 2012, 4, .                                                | 1.3 | 135       |
| 137 | Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytologist, 2012, 194, 775-783.                                                                                           | 3.5 | 111       |
| 138 | Contrasting urban and rural heat stress responses to climate change. Geophysical Research Letters, 2012, 39, .                                                                                                           | 1.5 | 170       |
| 139 | A new fractional snowâ€covered area parameterization for the Community Land Model and its effect on the surface energy balance. Journal of Geophysical Research, 2012, 117, .                                            | 3.3 | 134       |
| 140 | Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences, 2012, 9, 649-665.                                                                                                              | 1.3 | 160       |
| 141 | The CCSM4 Land Simulation, 1850–2005: Assessment of Surface Climate and New Capabilities. Journal of Climate, 2012, 25, 2240-2260.                                                                                       | 1.2 | 276       |
| 142 | A framework for benchmarking land models. Biogeosciences, 2012, 9, 3857-3874.                                                                                                                                            | 1.3 | 267       |
| 143 | Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations. Biogeosciences, 2012, 9, 2793-2819.                                                              | 1.3 | 68        |
| 144 | Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. Journal of Geophysical Research, 2011, 116, .                                   | 3.3 | 522       |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Simulating coupled carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western United States. Journal of Geophysical Research, 2011, 116, .                                            | 3.3 | 73        |
| 146 | Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 2011, 3, .                                        | 1.3 | 666       |
| 147 | Parameterization improvements and functional and structural advances in Version 4 of the<br>Community Land Model. Journal of Advances in Modeling Earth Systems, 2011, 3, n/a-n/a.                              | 1.3 | 367       |
| 148 | The Community Climate System Model Version 4. Journal of Climate, 2011, 24, 4973-4991.                                                                                                                          | 1.2 | 2,428     |
| 149 | Quantifying uncertainties in projections of extremes—a perturbed land surface parameter experiment.<br>Climate Dynamics, 2011, 37, 1381-1398.                                                                   | 1.7 | 44        |
| 150 | Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences, 2011, 8, 1925-1953.                             | 1.3 | 325       |
| 151 | Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environmental Research Letters, 2011, 6, 045504. | 2.2 | 109       |
| 152 | Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric<br>Chemistry and Physics, 2010, 10, 10875-10893.                                                              | 1.9 | 355       |
| 153 | The contribution of snow condition trends to future ground climate. Climate Dynamics, 2010, 34, 969-981.                                                                                                        | 1.7 | 172       |
| 154 | Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences, 2010, 7, 1877-1902.                                                                                                | 1.3 | 194       |
| 155 | The Seasonal Atmospheric Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century.<br>Journal of Climate, 2010, 23, 333-351.                                                                  | 1.2 | 447       |
| 156 | The Atmospheric Response to Projected Terrestrial Snow Changes in the Late Twenty-First Century.<br>Journal of Climate, 2010, 23, 6430-6437.                                                                    | 1.2 | 29        |
| 157 | Contribution of land surface initialization to subseasonal forecast skill: First results from a<br>multiâ€model experiment. Geophysical Research Letters, 2010, 37, .                                           | 1.5 | 330       |
| 158 | Arctic Landscapes in Transition: Responses to Thawing Permafrost. Eos, 2010, 91, 229-230.                                                                                                                       | 0.1 | 230       |
| 159 | Agricultural intensification and changes in cultivated areas, 1970–2005. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20675-20680.                               | 3.3 | 436       |
| 160 | Simulations of the 2004 North American Monsoon: NAMAP2. Journal of Climate, 2009, 22, 6716-6740.                                                                                                                | 1.2 | 33        |
| 161 | How much climate change can be avoided by mitigation?. Geophysical Research Letters, 2009, 36,                                                                                                                  | 1.5 | 36        |
| 162 | Examining the Interaction of Growing Crops with Local Climate Using a Coupled Crop–Climate Model.<br>Journal of Climate, 2009, 22, 1393-1411.                                                                   | 1.2 | 41        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Incorporating organic soil into a global climate model. Climate Dynamics, 2008, 30, 145-160.                                                                                                            | 1.7 | 306       |
| 164 | Sensitivity of a model projection of nearâ€surface permafrost degradation to soil column depth and representation of soil organic matter. Journal of Geophysical Research, 2008, 113, .                 | 3.3 | 239       |
| 165 | Use of FLUXNET in the Community Land Model development. Journal of Geophysical Research, 2008, 113,                                                                                                     | 3.3 | 210       |
| 166 | Improvements to the Community Land Model and their impact on the hydrological cycle. Journal of<br>Geophysical Research, 2008, 113, .                                                                   | 3.3 | 649       |
| 167 | Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophysical Research Letters, 2008, 35, .                                                                         | 1.5 | 195       |
| 168 | Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophysical Research<br>Letters, 2007, 34, .                                                                                     | 1.5 | 179       |
| 169 | An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost.<br>Geophysical Research Letters, 2007, 34, .                                                           | 1.5 | 114       |
| 170 | The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation<br>in a GCM: Impacts on Land–Atmosphere Interaction. Journal of Hydrometeorology, 2007, 8, 862-880. | 0.7 | 399       |
| 171 | Development and assessment of a coupled crop?climate model. Global Change Biology, 2007, 13, 169-183.                                                                                                   | 4.2 | 103       |
| 172 | GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. Journal of<br>Hydrometeorology, 2006, 7, 590-610.                                                                              | 0.7 | 616       |
| 173 | Reply to comment by C. R. Burn and F. E. Nelson on "A projection of near-surface permafrost<br>degradation during the 21st century― Geophysical Research Letters, 2006, 33, .                           | 1.5 | 10        |
| 174 | GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. Journal of<br>Hydrometeorology, 2006, 7, 611-625.                                                                             | 0.7 | 337       |
| 175 | Soil Moisture Memory in AGCM Simulations: Analysis of Global Land–Atmosphere Coupling Experiment<br>(GLACE) Data. Journal of Hydrometeorology, 2006, 7, 1090-1112.                                      | 0.7 | 257       |
| 176 | Climate Change Projections for the Twenty-First Century and Climate Change Commitment in the CCSM3. Journal of Climate, 2006, 19, 2597-2616.                                                            | 1.2 | 239       |
| 177 | Monsoon Regimes in the CCSM3. Journal of Climate, 2006, 19, 2482-2495.                                                                                                                                  | 1.2 | 79        |
| 178 | Weak Land–Atmosphere Coupling Strength in HadAM3: The Role of Soil Moisture Variability. Journal of Hydrometeorology, 2005, 6, 670-680.                                                                 | 0.7 | 37        |
| 179 | A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters, 2005, 32, .                                                                           | 1.5 | 370       |
| 180 | An annual cycle of vegetation in a GCM. Part I: implementation and impact on evaporation. Climate Dynamics, 2004, 22, 87-105.                                                                           | 1.7 | 46        |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | An annual cycle of vegetation in a GCM. Part II: global impacts on climate and hydrology. Climate Dynamics, 2004, 22, 107-122.                                              | 1.7 | 36        |
| 182 | Influence of vegetation on the local climate and hydrology in the tropics: sensitivity to soil parameters. Climate Dynamics, 2004, 23, 45-61.                               | 1.7 | 80        |
| 183 | Regions of Strong Coupling Between Soil Moisture and Precipitation. Science, 2004, 305, 1138-1140.                                                                          | 6.0 | 2,337     |
| 184 | The Boreal Summer Intraseasonal Oscillation: Relationship between Northward and Eastward Movement of Convection. Journals of the Atmospheric Sciences, 2002, 59, 1593-1606. | 0.6 | 352       |
| 185 | Dynamical response of equatorial Indian Ocean to intraseasonal winds: Zonal Flow. Geophysical<br>Research Letters, 2001, 28, 4215-4218.                                     | 1.5 | 94        |
| 186 | Interannual Variations of the Intraseasonal Oscillation in the South Asian Summer Monsoon Region.<br>Journal of Climate, 2001, 14, 2910-2922.                               | 1.2 | 145       |
| 187 | Issues Related to Incorporating Northern Peatlands into Global Climate Models. Geophysical Monograph Series, 0, , 19-35.                                                    | 0.1 | 30        |
| 188 | The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 0, , 130204122247009.                            | 1.7 | 103       |