List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3816267/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Central Nervous System Entry of Peripherally Injected Umbilical Cord Blood Cells Is Not Required for<br>Neuroprotection in Stroke. Stroke, 2004, 35, 2385-2389.                                                                           | 1.0 | 435       |
| 2  | Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson's disease.<br>Annals of Neurology, 1995, 38, 379-388.                                                                                                | 2.8 | 421       |
| 3  | Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences,<br>and therapeutic opportunities. Neuropsychiatric Disease and Treatment, 2015, 11, 97.                                                           | 1.0 | 333       |
| 4  | Transplantation of Cryopreserved Human Embryonal Carcinoma-Derived Neurons (NT2N Cells)<br>Promotes Functional Recovery in Ischemic Rats. Experimental Neurology, 1998, 149, 310-321.                                                     | 2.0 | 331       |
| 5  | Transplantation of Human Neural Stem Cells Exerts Neuroprotection in a Rat Model of Parkinson's<br>Disease. Journal of Neuroscience, 2006, 26, 12497-12511.                                                                               | 1.7 | 266       |
| 6  | Intravenous Administration of Human Umbilical Cord Blood Cells in a Mouse Model of Amyotrophic<br>Lateral Sclerosis: Distribution, Migration, and Differentiation. Journal of Hematotherapy and Stem<br>Cell Research, 2003, 12, 255-270. | 1.8 | 259       |
| 7  | The spleen contributes to strokeâ€induced neurodegeneration. Journal of Neuroscience Research, 2008,<br>86, 2227-2234.                                                                                                                    | 1.3 | 253       |
| 8  | Neuroprotective strategies for basal ganglia degeneration: Parkinson's and Huntington's diseases.<br>Progress in Neurobiology, 2000, 60, 409-470.                                                                                         | 2.8 | 251       |
| 9  | Wharton's Jelly-Derived Mesenchymal Stem Cells: Phenotypic Characterization and Optimizing Their<br>Therapeutic Potential for Clinical Applications. International Journal of Molecular Sciences, 2013, 14,<br>11692-11712.               | 1.8 | 247       |
| 10 | Microglia Activation as a Biomarker for Traumatic Brain Injury. Frontiers in Neurology, 2013, 4, 30.                                                                                                                                      | 1.1 | 219       |
| 11 | Vitamin D3 attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Research, 2001, 904,<br>67-75.                                                                                                                               | 1.1 | 215       |
| 12 | The great migration of bone marrow-derived stem cells toward the ischemic brain: Therapeutic implications for stroke and other neurological disorders. Progress in Neurobiology, 2011, 95, 213-228.                                       | 2.8 | 197       |
| 13 | Evidence of Compromised Blood-Spinal Cord Barrier in Early and Late Symptomatic SOD1 Mice<br>Modeling ALS. PLoS ONE, 2007, 2, e1205.                                                                                                      | 1.1 | 197       |
| 14 | Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS.<br>Brain Research, 2007, 1157, 126-137.                                                                                                    | 1.1 | 195       |
| 15 | Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Progress in Neurobiology, 2017, 158, 94-131.                                                                              | 2.8 | 193       |
| 16 | Menstrual Blood Cells Display Stem Cell–Like Phenotypic Markers and Exert Neuroprotection<br>Following Transplantation in Experimental Stroke. Stem Cells and Development, 2010, 19, 439-452.                                             | 1.1 | 187       |
| 17 | The choroid plexus in the rise, fall and repair of the brain. BioEssays, 2005, 27, 262-274.                                                                                                                                               | 1.2 | 185       |
| 18 | Impaired blood–brain/spinal cord barrier in ALS patients. Brain Research, 2012, 1469, 114-128.                                                                                                                                            | 1.1 | 183       |

| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neuroscience, 2006, 7, 56.                                                                                                                                                      | 0.8 | 171       |
| 20 | 3-Nitropropionic acid animal model and Huntington' s disease. Neuroscience and Biobehavioral Reviews, 1997, 21, 289-293.                                                                                                                                                                         | 2.9 | 166       |
| 21 | Stem cells and neurological diseases. Cell Proliferation, 2008, 41, 94-114.                                                                                                                                                                                                                      | 2.4 | 165       |
| 22 | Intravenous Bone Marrow Stem Cell Grafts Preferentially Migrate to Spleen and Abrogate Chronic<br>Inflammation in Stroke. Stroke, 2015, 46, 2616-2627.                                                                                                                                           | 1.0 | 165       |
| 23 | Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain<br>Research, 2004, 1010, 108-116.                                                                                                                                                                   | 1.1 | 163       |
| 24 | Long-Term Upregulation of Inflammation and Suppression of Cell Proliferation in the Brain of Adult<br>Rats Exposed to Traumatic Brain Injury Using the Controlled Cortical Impact Model. PLoS ONE, 2013, 8,<br>e53376.                                                                           | 1.1 | 159       |
| 25 | Neural transplantation of human neuroteratocarcinoma (hNT) neurons into ischemic rats. A<br>quantitative dose–response analysis of cell survival and behavioral recovery. Neuroscience, 1999, 91,<br>519-525.                                                                                    | 1.1 | 150       |
| 26 | Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer. International Journal of<br>Molecular Sciences, 2016, 17, 2101.                                                                                                                                                        | 1.8 | 150       |
| 27 | Intravenous Transplants of Human Adipose-Derived Stem Cell Protect the Brain from Traumatic Brain<br>Injury-Induced Neurodegeneration and Motor and Cognitive Impairments: Cell Graft Biodistribution<br>and Soluble Factors in Young and Aged Rats. Journal of Neuroscience, 2014, 34, 313-326. | 1.7 | 147       |
| 28 | Testis-derived Sertoli cells survive and provide localized immunoprotection for xenografts in rat<br>brain. Nature Biotechnology, 1996, 14, 1692-1695.                                                                                                                                           | 9.4 | 145       |
| 29 | Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurology, 2004, 4, 7.                                                                                                                                                       | 0.8 | 142       |
| 30 | Stem Cells as an Emerging Paradigm in Stroke 3. Stroke, 2014, 45, 634-639.                                                                                                                                                                                                                       | 1.0 | 141       |
| 31 | Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates<br>inflammation-linked networks following traumatic brain injury. Journal of Neuroinflammation, 2018,<br>15, 204.                                                                                               | 3.1 | 139       |
| 32 | Mannitol facilitates neurotrophic factor upâ€regulation and behavioural recovery in neonatal<br>hypoxicâ€ischaemic rats with human umbilical cord blood grafts. Journal of Cellular and Molecular<br>Medicine, 2010, 14, 914-921.                                                                | 1.6 | 133       |
| 33 | Amniotic membrane and amniotic cells: Potential therapeutic tools to combat tissue inflammation and fibrosis?. Placenta, 2011, 32, S320-S325.                                                                                                                                                    | 0.7 | 132       |
| 34 | Age-related loss of muscle mass and bone strength in mice is associated with a decline in physical activity and serum leptin. Bone, 2006, 39, 845-853.                                                                                                                                           | 1.4 | 131       |
| 35 | Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neuroscience, 2009, 10, 126.                                                                                                                                                                  | 0.8 | 128       |
| 36 | Toward Cell Therapy Using Placenta-Derived Cells: Disease Mechanisms, Cell Biology, Preclinical<br>Studies, and Regulatory Aspects at the Round Table. Stem Cells and Development, 2010, 19, 143-154.                                                                                            | 1.1 | 127       |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Alpha‧ynuclein as a Pathological Link Between Chronic Traumatic Brain Injury and Parkinson's<br>Disease. Journal of Cellular Physiology, 2015, 230, 1024-1032.                                                                             | 2.0 | 127       |
| 38 | Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Research, 2009, 1287, 157-163.                                                                                | 1.1 | 126       |
| 39 | Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory<br>and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Research Bulletin,<br>2003, 60, 297-306.        | 1.4 | 125       |
| 40 | Intracerebral Transplantation of Porcine Choroid Plexus Provides Structural and Functional Neuroprotection in a Rodent Model of Stroke. Stroke, 2004, 35, 2206-2210.                                                                       | 1.0 | 123       |
| 41 | Behavioral pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington's disease. Brain Research, 1995, 697, 254-257.                                                             | 1.1 | 117       |
| 42 | Human Umbilical Cord Blood Progenitors: The Potential of These Hematopoietic Cells to Become<br>Neural. Stem Cells, 2005, 23, 1560-1570.                                                                                                   | 1.4 | 117       |
| 43 | Luteolin Reduces Alzheimer's Disease Pathologies Induced by Traumatic Brain Injury. International<br>Journal of Molecular Sciences, 2014, 15, 895-904.                                                                                     | 1.8 | 117       |
| 44 | Systemic 3-nitropropionic acid: Behavioral deficits and striatal damage in adult rats. Brain Research<br>Bulletin, 1995, 36, 549-556.                                                                                                      | 1.4 | 116       |
| 45 | Neurorescue effects of VEGF on a rat model of Parkinson's disease. Brain Research, 2005, 1053, 10-18.                                                                                                                                      | 1.1 | 115       |
| 46 | Intravenous Grafts Recapitulate the Neurorestoration Afforded by Intracerebrally Delivered<br>Multipotent Adult Progenitor Cells in Neonatal Hypoxic-Ischemic Rats. Journal of Cerebral Blood<br>Flow and Metabolism, 2008, 28, 1804-1810. | 2.4 | 115       |
| 47 | Blood-CNS Barrier Impairment in ALS patients versus an animal model. Frontiers in Cellular<br>Neuroscience, 2014, 8, 21.                                                                                                                   | 1.8 | 114       |
| 48 | Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Experimental Neurology, 2004, 186, 248-251.                                                                                          | 2.0 | 113       |
| 49 | Electrical Stimulation of the Cerebral Cortex Exerts Antiapoptotic, Angiogenic, and Anti-Inflammatory<br>Effects in Ischemic Stroke Rats Through Phosphoinositide 3-Kinase/Akt Signaling Pathway. Stroke,<br>2009, 40, e598-605.           | 1.0 | 112       |
| 50 | Kallikrein Protects Against Ischemic Stroke by Inhibiting Apoptosis and Inflammation and Promoting<br>Angiogenesis and Neurogenesis. Human Gene Therapy, 2006, 17, 206-219.                                                                | 1.4 | 110       |
| 51 | Locomotor and passive avoidance deficits following occlusion of the middle cerebral artery.<br>Physiology and Behavior, 1995, 58, 909-917.                                                                                                 | 1.0 | 109       |
| 52 | Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson's disease.<br>Experimental Neurology, 2016, 275, 220-231.                                                                                       | 2.0 | 109       |
| 53 | Cell-based therapy in ischemic stroke. Expert Review of Neurotherapeutics, 2008, 8, 1193-1201.                                                                                                                                             | 1.4 | 106       |
| 54 | Kallikrein Gene Transfer Protects Against Ischemic Stroke by Promoting Glial Cell Migration and Inhibiting Apoptosis. Hypertension, 2004, 43, 452-459.                                                                                     | 1.3 | 105       |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Umbilical Cord Blood-Derived Stem Cells and Brain Repair. Annals of the New York Academy of Sciences, 2005, 1049, 67-83.                                                                                                                       | 1.8  | 105       |
| 56 | Delta opioid peptide (D-ALA 2, D-LEU 5) enkephalin: linking hibernation and neuroprotection. Frontiers<br>in Bioscience - Landmark, 2004, 9, 3392.                                                                                             | 3.0  | 104       |
| 57 | Notch-Induced Rat and Human Bone Marrow Stromal Cell Grafts Reduce Ischemic Cell Loss and<br>Ameliorate Behavioral Deficits in Chronic Stroke Animals. Stem Cells and Development, 2009, 18,<br>1501-1514.                                     | 1.1  | 104       |
| 58 | Neuroprotective Effects of Liraglutide for Stroke Model of Rats. International Journal of Molecular<br>Sciences, 2013, 14, 21513-21524.                                                                                                        | 1.8  | 104       |
| 59 | Amyotrophic lateral sclerosis: A neurovascular disease. Brain Research, 2011, 1398, 113-125.                                                                                                                                                   | 1.1  | 103       |
| 60 | Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia.<br>FASEB Journal, 2000, 14, 1307-1317.                                                                                                     | 0.2  | 102       |
| 61 | Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells.<br>Cytotherapy, 2015, 17, 18-24.                                                                                                           | 0.3  | 102       |
| 62 | Bone marrow stem cell mobilization in stroke: a â€~bonehead' may be good after all!. Leukemia, 2011, 25,<br>1674-1686.                                                                                                                         | 3.3  | 100       |
| 63 | Concise Review: Stem Cell Therapy for Stroke Patients: Are We There Yet?. Stem Cells Translational<br>Medicine, 2019, 8, 983-988.                                                                                                              | 1.6  | 99        |
| 64 | Cerebral ischemia and CNS transplantation. NeuroReport, 1998, 9, 3703-3709.                                                                                                                                                                    | 0.6  | 98        |
| 65 | Amniotic Fluid as a Rich Source of Mesenchymal Stromal Cells for Transplantation Therapy. Cell Transplantation, 2011, 20, 789-796.                                                                                                             | 1.2  | 97        |
| 66 | Transplantation of Bone Marrow-Derived Stem Cells: A Promising Therapy for Stroke. Cell<br>Transplantation, 2007, 16, 159-169.                                                                                                                 | 1.2  | 96        |
| 67 | The immunology of traumatic brain injury: a prime target for Alzheimer's disease prevention. Journal of Neuroinflammation, 2012, 9, 185.                                                                                                       | 3.1  | 96        |
| 68 | Combination Therapy of Human Umbilical Cord Blood Cells and Granulocyte Colony Stimulating<br>Factor Reduces Histopathological and Motor Impairments in an Experimental Model of Chronic<br>Traumatic Brain Injury. PLoS ONE, 2014, 9, e90953. | 1.1  | 94        |
| 69 | Neural progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in stroke.<br>Progress in Neurobiology, 2008, 85, 318-334.                                                                                                  | 2.8  | 92        |
| 70 | Asymmetrical motor behavior in rats with unilateral striatal excitotoxic lesions as revealed by the elevated body swing test. Brain Research, 1995, 676, 231-234.                                                                              | 1.1  | 91        |
| 71 | Testis-derived Sertoli cells have a trophic effect on dopamine neurons and alleviate hemiparkinsonism in rats. Nature Medicine, 1997, 3, 1129-1132.                                                                                            | 15.2 | 91        |
| 72 | Positive Effect of Transplantation of hNT Neurons (NTera 2/D1 Cell-Line) in a Model of Familial<br>Amyotrophic Lateral Sclerosis. Experimental Neurology, 2002, 174, 169-180.                                                                  | 2.0  | 91        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Injectable VEGF Hydrogels Produce Near Complete Neurological and Anatomical Protection following<br>Cerebral Ischemia in Rats. Cell Transplantation, 2010, 19, 1063-1071.                                                                    | 1.2 | 90        |
| 74 | Strategies to Extend Thrombolytic Time Window for Ischemic Stroke Treatment: An Unmet Clinical Need. Journal of Stroke, 2017, 19, 50-60.                                                                                                     | 1.4 | 90        |
| 75 | Human Umbilical Cord Blood Treatment in a Mouse Model of ALS: Optimization of Cell Dose. PLoS ONE, 2008, 3, e2494.                                                                                                                           | 1.1 | 90        |
| 76 | Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys.<br>Neurobiology of Disease, 2006, 23, 471-480.                                                                                                      | 2.1 | 89        |
| 77 | Postischemic Brain Injury Is Exacerbated in Mice Lacking the Kinin B2 Receptor. Hypertension, 2006, 47, 752-761.                                                                                                                             | 1.3 | 89        |
| 78 | Human Umbilical Cord Blood Cell Grafts for Brain Ischemia. Cell Transplantation, 2009, 18, 985-998.                                                                                                                                          | 1.2 | 88        |
| 79 | Transplantation of Unique Subpopulation of Fibroblasts, Muse Cells, Ameliorates Experimental Stroke<br>Possibly via Robust Neuronal Differentiation. Stem Cells, 2016, 34, 160-173.                                                          | 1.4 | 88        |
| 80 | MicroRNA-133a and Myocardial Infarction. Cell Transplantation, 2019, 28, 831-838.                                                                                                                                                            | 1.2 | 88        |
| 81 | Electromagnetic Treatment to Old Alzheimer's Mice Reverses β-Amyloid Deposition, Modifies Cerebral<br>Blood Flow, and Provides Selected Cognitive Benefit. PLoS ONE, 2012, 7, e35751.                                                        | 1.1 | 88        |
| 82 | Behavioral and Histological Characterization of Intrahippocampal Grafts of Human Bone<br>Marrow-Derived Multipotent Progenitor Cells in Neonatal Rats with Hypoxic-Ischemic Injury. Cell<br>Transplantation, 2006, 15, 231-238.              | 1.2 | 87        |
| 83 | Cyclosporine-A as a neuroprotective agent against stroke: Its translation from laboratory research to clinical application. Neuropeptides, 2011, 45, 359-368.                                                                                | 0.9 | 87        |
| 84 | Intra-Arterial Transplantation of Allogeneic Mesenchymal Stem Cells Mounts Neuroprotective Effects<br>in a Transient Ischemic Stroke Model in Rats: Analyses of Therapeutic Time Window and Its<br>Mechanisms. PLoS ONE, 2015, 10, e0127302. | 1.1 | 86        |
| 85 | Early assessment of motor dysfunctions aids in successful occlusion of the middle cerebral artery.<br>NeuroReport, 1998, 9, 3615-3621.                                                                                                       | 0.6 | 85        |
| 86 | Cell Therapy for Stroke. Stroke, 2009, 40, S146-8.                                                                                                                                                                                           | 1.0 | 84        |
| 87 | Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model. Stroke, 2017, 48, 428-435.                                                                                                                                 | 1.0 | 84        |
| 88 | Amnion: A Potent Graft Source for Cell Therapy in Stroke. Cell Transplantation, 2009, 18, 111-118.                                                                                                                                           | 1.2 | 83        |
| 89 | CNS immunological modulation of neural graft rejection and survival. Neurological Research, 1996, 18, 297-304.                                                                                                                               | 0.6 | 82        |
| 90 | Potential of stem/progenitor cells in treating stroke: the missing steps in translating cell therapy from laboratory to clinic. Regenerative Medicine, 2008, 3, 249-250.                                                                     | 0.8 | 82        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Estrogen protects against while testosterone exacerbates vulnerability of the lateral striatal artery to chemical hypoxia by 3-nitropropionic acid. Neuroscience Research, 1998, 30, 303-312.                                   | 1.0 | 80        |
| 92  | Viability and survival of hNT neurons determine degree of functional recovery in grafted ischemic rats. NeuroReport, 1998, 9, 2837-2842.                                                                                        | 0.6 | 80        |
| 93  | Lack of exercise, via hindlimb suspension, impedes endogenous neurogenesis. Neuroscience, 2007, 149, 182-191.                                                                                                                   | 1.1 | 80        |
| 94  | Recent Studies Assessing the Proliferative Capability of a Novel Adult Stem Cell Identified in<br>Menstrual Blood. Open Stem Cell Journal, 2011, 3, 4-10.                                                                       | 2.0 | 80        |
| 95  | Human Umbilical Cord Stem Cells Ameliorate Experimental Autoimmune Encephalomyelitis by<br>Regulating Immunoinflammation and Remyelination. Stem Cells and Development, 2013, 22, 1053-1062.                                    | 1.1 | 80        |
| 96  | Genetic and histologic evidence implicates role of inflammation in traumatic brain injury-induced<br>apoptosis in the rat cerebral cortex following moderate fluid percussion injury. Neuroscience, 2010,<br>171, 1273-1282.    | 1.1 | 79        |
| 97  | Transplantation of Umbilical Cord Blood Stem Cells for Treating Spinal Cord Injury. Stem Cell<br>Reviews and Reports, 2011, 7, 181-194.                                                                                         | 5.6 | 79        |
| 98  | Humoral factors in ALS patients during disease progression. Journal of Neuroinflammation, 2015, 12, 127.                                                                                                                        | 3.1 | 77        |
| 99  | Intravenous Grafts Of Amniotic Fluid-Derived Stem Cells Induce Endogenous Cell Proliferation and Attenuate Behavioral Deficits in Ischemic Stroke Rats. PLoS ONE, 2012, 7, e43779.                                              | 1.1 | 75        |
| 100 | Stem Cell Recruitment of Newly Formed Host Cells via a Successful Seduction? Filling the Gap between Neurogenic Niche and Injured Brain Site. PLoS ONE, 2013, 8, e74857.                                                        | 1.1 | 75        |
| 101 | Treatment with delta opioid peptide enhances in vitro and in vivo survival of rat dopaminergic neurons. NeuroReport, 2000, 11, 923-926.                                                                                         | 0.6 | 74        |
| 102 | Hibernation-like state induced by an opioid peptide protects against experimental stroke. BMC Biology, 2009, 7, 31.                                                                                                             | 1.7 | 74        |
| 103 | Probiotics and Prebiotics as a Therapeutic Strategy to Improve Memory in a Model of Middle-Aged Rats.<br>Frontiers in Aging Neuroscience, 2018, 10, 416.                                                                        | 1.7 | 73        |
| 104 | Mannitol-Enhanced Delivery of Stem Cells and Their Growth Factors across the Blood–Brain Barrier.<br>Cell Transplantation, 2014, 23, 531-539.                                                                                   | 1.2 | 72        |
| 105 | Hyperbaric Oxygen Therapy for Treatment of Postischemic Stroke in Adult Rats. Experimental<br>Neurology, 2000, 166, 298-306.                                                                                                    | 2.0 | 71        |
| 106 | Chapter 21 Restoration of function by neural transplantation in the ischemic brain. Progress in Brain Research, 2000, 127, 461-476.                                                                                             | 0.9 | 70        |
| 107 | Role of Caspase-3-Mediated Apoptosis in Chronic Caspase-3-Cleaved Tau Accumulation and Blood–Brain<br>Barrier Damage in the Corpus Callosum after Traumatic Brain Injury in Rats. Journal of Neurotrauma,<br>2018, 35, 157-173. | 1.7 | 70        |
| 108 | Neural Transplantation as an Experimental Treatment Modality for Cerebral Ischemia. Neuroscience and Biobehavioral Reviews, 1997, 21, 79-90.                                                                                    | 2.9 | 69        |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Tumorigenicity Issues of Embryonic Carcinoma-derived Stem Cells: Relevance to Surgical Trials Using NT2 and hNT Neural Cells. Stem Cells and Development, 2005, 14, 29-43.    | 1.1 | 69        |
| 110 | Adrenomedullin Gene Delivery Protects Against Cerebral Ischemic Injury by Promoting Astrocyte<br>Migration and Survival. Human Gene Therapy, 2004, 15, 1243-1254.             | 1.4 | 67        |
| 111 | Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro. Scientific Reports, 2016, 6, 35659.                                                          | 1.6 | 67        |
| 112 | The Treatment of Neurodegenerative Disorders Using Umbilical Cord Blood and Menstrual Blood-Derived Stem Cells. Cell Transplantation, 2011, 20, 85-94.                        | 1.2 | 65        |
| 113 | Neural transplantation for neurodegenerative disorders. Lancet, The, 1999, 353, S29-S30.                                                                                      | 6.3 | 64        |
| 114 | Quantitative analyses of matrix metalloproteinase activity after traumatic brain injury in adult rats.<br>Brain Research, 2009, 1280, 172-177.                                | 1.1 | 64        |
| 115 | In Vivo Animal Stroke Models. Translational Stroke Research, 2013, 4, 308-321.                                                                                                | 2.3 | 64        |
| 116 | Vasculogenesis in Experimental Stroke After Human Cerebral Endothelial Cell Transplantation.<br>Stroke, 2013, 44, 3473-3481.                                                  | 1.0 | 63        |
| 117 | Brain-derived Neurotrophic Factor Signaling Pathway: Modulation by Acupuncture in Telomerase<br>Knockout Mice. Alternative Therapies in Health and Medicine, 2015, 21, 36-46. | 0.0 | 62        |
| 118 | Permeating the Blood Brain Barrier and Abrogating the Inflammation in Stroke: Implications for Stroke Therapy. Current Pharmaceutical Design, 2012, 18, 3670-3676.            | 0.9 | 61        |
| 119 | Traumatic Brain Injury Precipitates Cognitive Impairment and Extracellular AÎ <sup>2</sup> Aggregation in Alzheimer's Disease Transgenic Mice. PLoS ONE, 2013, 8, e78851.     | 1.1 | 61        |
| 120 | Recent Advances in Stem Cell-Based Therapeutics for Stroke. Translational Stroke Research, 2016, 7, 452-457.                                                                  | 2.3 | 61        |
| 121 | Neuroprotection by encapsulated choroid plexus in a rodent model of Huntington's disease.<br>NeuroReport, 2004, 15, 2521-2525.                                                | 0.6 | 60        |
| 122 | Melatonin as an Antioxidant for Stroke Neuroprotection. Cell Transplantation, 2016, 25, 883-891.                                                                              | 1.2 | 60        |
| 123 | Humble beginnings with big goals: Small molecule soluble epoxide hydrolase inhibitors for treating CNS disorders. Progress in Neurobiology, 2019, 172, 23-39.                 | 2.8 | 59        |
| 124 | Systemic 3-nitropropionic acid: long-term effects on locomotor behavior. Brain Research, 1994, 646, 242-246.                                                                  | 1.1 | 58        |
| 125 | Hyperactivity and hypoactivity in a rat model of Huntington's disease: the systemic 3-nitropropionic acid model. Brain Research Protocols, 1997, 1, 253-257.                  | 1.7 | 58        |
| 126 | The choroid plexus: function, pathology and therapeutic potential of its transplantation. Expert<br>Opinion on Biological Therapy, 2004, 4, 1191-1201.                        | 1.4 | 58        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Peripheral Nerve Repair with Cultured Schwann Cells: Getting Closer to the Clinics. Scientific World<br>Journal, The, 2012, 2012, 1-10.                                                                                                       | 0.8 | 58        |
| 128 | Lithium Chloride Induces the Expression of Tyrosine Hydroxylase in hNT Neurons. Experimental Neurology, 1999, 157, 251-258.                                                                                                                   | 2.0 | 57        |
| 129 | Amniotic Fluid Stem Cells: a Promising Therapeutic Resource for Cell-Based Regenerative Therapy.<br>Current Pharmaceutical Design, 2012, 18, 1846-1863.                                                                                       | 0.9 | 56        |
| 130 | Transplantation of bone marrow-derived stem cells: a promising therapy for stroke. Cell<br>Transplantation, 2007, 16, 159-69.                                                                                                                 | 1.2 | 56        |
| 131 | CNS grafts of rat choroid plexus protect against cerebral ischemia in adult rats. NeuroReport, 2004, 15, 1543-1547.                                                                                                                           | 0.6 | 55        |
| 132 | Effects of Voluntary Physical Exercise, Citicoline, and Combined Treatment on Object Recognition<br>Memory, Neurogenesis, and Neuroprotection after Traumatic Brain Injury in Rats. Journal of<br>Neurotrauma, 2015, 32, 739-751.             | 1.7 | 54        |
| 133 | Survival of Rat and Porcine Sertoli Cell Transplants in the Rat Striatum without Cyclosporine-A<br>Immunosuppression. Experimental Neurology, 1997, 146, 299-304.                                                                             | 2.0 | 53        |
| 134 | Ischemic Stroke Brain Sends Indirect Cell Death Signals to the Heart. Stroke, 2013, 44, 3175-3182.                                                                                                                                            | 1.0 | 53        |
| 135 | Blood-Brain Barrier Alterations Provide Evidence of Subacute Diaschisis in an Ischemic Stroke Rat<br>Model. PLoS ONE, 2013, 8, e63553.                                                                                                        | 1.1 | 53        |
| 136 | Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS. PLoS ONE, 2012, 7, e31254.                                                                                                          | 1.1 | 53        |
| 137 | Postischemic infusion of adrenomedullin protects against ischemic stroke by inhibiting apoptosis and promoting angiogenesis. Experimental Neurology, 2006, 197, 521-530.                                                                      | 2.0 | 52        |
| 138 | Stem cell therapy for neurological disorders: A focus on aging. Neurobiology of Disease, 2019, 126,<br>85-104.                                                                                                                                | 2.1 | 52        |
| 139 | Regulatory T-cells within bone marrow-derived stem cells actively confer immunomodulatory and neuroprotective effects against stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1750-1758.                                     | 2.4 | 52        |
| 140 | Spirulina Promotes Stem Cell Genesis and Protects against LPS Induced Declines in Neural Stem Cell<br>Proliferation. PLoS ONE, 2010, 5, e10496.                                                                                               | 1.1 | 52        |
| 141 | Inflammation and Stem Cell Migration to the Injured Brain in Higher Organisms. Stem Cells and Development, 2009, 18, 693-702.                                                                                                                 | 1.1 | 51        |
| 142 | Compromised blood–brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. Journal of Comparative Neurology, 2014, 522, 3120-3137.                                                                        | 0.9 | 51        |
| 143 | Article Commentary: Who's in Favor of Translational Cell Therapy for Stroke: STEPS Forward Please?.<br>Cell Transplantation, 2009, 18, 691-693.                                                                                               | 1.2 | 50        |
| 144 | Granulocyte Colony-Stimulating Factor Attenuates Delayed tPA-Induced Hemorrhagic Transformation<br>in Ischemic Stroke Rats by Enhancing Angiogenesis and Vasculogenesis. Journal of Cerebral Blood<br>Flow and Metabolism, 2015, 35, 338-346. | 2.4 | 50        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Mitochondrial targeting as a novel therapy for stroke. Brain Circulation, 2018, 4, 84.                                                                                                        | 0.7 | 50        |
| 146 | Methamphetamine Potentiates Ischemia/Reperfusion Insults After Transient Middle Cerebral Artery<br>Ligation. Stroke, 2001, 32, 775-782.                                                       | 1.0 | 49        |
| 147 | Intracerebral Xenotransplantation of GFP Mouse Bone Marrow Stromal Cells in Intact and Stroke Rat<br>Brain: Graft Survival and Immunologic Response. Cell Transplantation, 2004, 13, 283-294. | 1.2 | 49        |
| 148 | Transplants of Encapsulated Rat Choroid Plexus Cells Exert Neuroprotection in a Rodent Model of Huntington's Disease. Cell Transplantation, 2007, 16, 987-992.                                | 1.2 | 49        |
| 149 | Stem cell-paved biobridge facilitates neural repair in traumatic brain injury. Frontiers in Systems<br>Neuroscience, 2014, 8, 116.                                                            | 1.2 | 49        |
| 150 | The Neuroprotective Role of Acupuncture and Activation of the BDNF Signaling Pathway.<br>International Journal of Molecular Sciences, 2014, 15, 3234-3252.                                    | 1.8 | 49        |
| 151 | Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neuroscience and Therapeutics, 2020, 26, 603-615.                                   | 1.9 | 49        |
| 152 | Neural transplantation for treatment of Parkinson's disease. Drug Discovery Today, 2002, 7, 674-682.                                                                                          | 3.2 | 48        |
| 153 | Novel cell therapy approaches for brain repair. Progress in Brain Research, 2006, 157, 207-222.                                                                                               | 0.9 | 48        |
| 154 | Human amniotic epithelial cells express melatonin receptor MT1, but not melatonin receptor MT2: a new perspective to neuroprotection. Journal of Pineal Research, 2011, 50, 272-280.          | 3.4 | 48        |
| 155 | Recent preclinical evidence advancing cell therapy for Alzheimer's disease. Experimental Neurology, 2012, 237, 142-146.                                                                       | 2.0 | 48        |
| 156 | Influence of Post-Traumatic Stress Disorder on Neuroinflammation and Cell Proliferation in a Rat<br>Model of Traumatic Brain Injury. PLoS ONE, 2013, 8, e81585.                               | 1.1 | 48        |
| 157 | Trophic factor secreting kidney cell lines: in vitro characterization and functional effects following transplantation in ischemic rats. Brain Research, 2001, 900, 268-276.                  | 1.1 | 47        |
| 158 | Cell therapy for central nervous system disorders: Current obstacles to progress. CNS Neuroscience and Therapeutics, 2020, 26, 595-602.                                                       | 1.9 | 47        |
| 159 | Increased Amyloid Precursor Protein and Tau Expression Manifests as Key Secondary Cell Death in<br>Chronic Traumatic Brain Injury. Journal of Cellular Physiology, 2017, 232, 665-677.        | 2.0 | 46        |
| 160 | Transplantation of Fetal Kidney Tissue Reduces Cerebral Infarction Induced by Middle Cerebral Artery<br>Ligation. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 1329-1335.         | 2.4 | 45        |
| 161 | Intracerebral xenografts of mouse bone marrow cells in adult rats facilitate restoration of cerebral blood flow and blood–brain barrier. Brain Research, 2004, 1009, 26-33.                   | 1.1 | 44        |
| 162 | Autophagic down-regulation in motor neurons remarkably prolongs the survival of ALS mice.<br>Neuropharmacology, 2016, 108, 152-160.                                                           | 2.0 | 44        |

| #   | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Systemic, but not intraparenchymal, administration of 3-nitropropionic acid mimics the<br>neuropathology of Huntington's disease: a speculative explanation. Neuroscience Research, 1997, 28,<br>185-189.                                                                         | 1.0 | 43        |
| 164 | Dietary Supplementation Exerts Neuroprotective Effects in Ischemic Stroke Model. Rejuvenation Research, 2008, 11, 201-214.                                                                                                                                                        | 0.9 | 43        |
| 165 | Cell Therapy for Stroke: Emphasis on Optimizing Safety and Efficacy Profile of Endothelial Progenitor<br>Cells. Current Pharmaceutical Design, 2012, 18, 3731-3734.                                                                                                               | 0.9 | 42        |
| 166 | One, Two, Three Steps Toward Cell Therapy for Stroke. Stroke, 2015, 46, 588-591.                                                                                                                                                                                                  | 1.0 | 42        |
| 167 | Age of PISCES: stem-cell clinical trials in stroke. Lancet, The, 2016, 388, 736-738.                                                                                                                                                                                              | 6.3 | 42        |
| 168 | (-)-Nicotine Protects against Systemic Kainic Acid-Induced Excitotoxic Effects. Experimental Neurology,<br>1995, 136, 261-265.                                                                                                                                                    | 2.0 | 41        |
| 169 | Limitations of intravenous human bone marrow CD133+ cell grafts in stroke rats. Brain Research, 2005, 1048, 116-122.                                                                                                                                                              | 1.1 | 41        |
| 170 | Ex vivo gene therapy: transplantation of neurotrophic factor-secreting cells for cerebral ischemia.<br>Frontiers in Bioscience - Landmark, 2006, 11, 760.                                                                                                                         | 3.0 | 41        |
| 171 | Trophic factor induction of human umbilical cord blood cellsin vitroandin vivo. Journal of Neural Engineering, 2007, 4, 130-145.                                                                                                                                                  | 1.8 | 41        |
| 172 | Striatal Stimulation Nurtures Endogenous Neurogenesis and Angiogenesis in Chronic-Phase Ischemic<br>Stroke Rats. Cell Transplantation, 2011, 20, 1049-1064.                                                                                                                       | 1.2 | 41        |
| 173 | Intravenously Transplanted Human Bone Marrow Endothelial Progenitor Cells Engraft Within Brain<br>Capillaries, Preserve Mitochondrial Morphology, and Display Pinocytotic Activity Toward Blood-Brain<br>Barrier Repair in Ischemic Stroke Rats. Stem Cells, 2017, 35, 1246-1258. | 1.4 | 41        |
| 174 | Adjunctive Therapy Approaches for Ischemic Stroke: Innovations to Expand Time Window of Treatment.<br>International Journal of Molecular Sciences, 2017, 18, 2756.                                                                                                                | 1.8 | 41        |
| 175 | Striatal dopamine-mediated motor behavior is altered following occlusion of the middle cerebral artery. Pharmacology Biochemistry and Behavior, 1995, 52, 225-229.                                                                                                                | 1.3 | 40        |
| 176 | Transplantation of Human Umbilical Cord Blood Cells Benefits an Animal Model of Sanfilippo<br>Syndrome Type B. Stem Cells and Development, 2005, 14, 384-394.                                                                                                                     | 1.1 | 40        |
| 177 | Intravenous infusion of GDNF gene-modified human umbilical cord blood CD34+ cells protects against cerebral ischemic injury in spontaneously hypertensive rats. Brain Research, 2010, 1366, 217-225.                                                                              | 1.1 | 40        |
| 178 | Prophylactic treatment of hyperbaric oxygen treatment mitigates inflammatory response via mitochondria transfer. CNS Neuroscience and Therapeutics, 2019, 25, 815-823.                                                                                                            | 1.9 | 40        |
| 179 | A Short Bout of Exercise Prior to Stroke Improves Functional Outcomes by Enhancing Angiogenesis.<br>NeuroMolecular Medicine, 2019, 21, 517-528.                                                                                                                                   | 1.8 | 40        |
| 180 | Baby STEPS: A Giant Leap for Cell Therapy in Neonatal Brain Injury. Pediatric Research, 2011, 70, 3-9.                                                                                                                                                                            | 1.1 | 39        |

| #   | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Stem Cell Transplantation for Neuroprotection in Stroke. Brain Sciences, 2013, 3, 239-261.                                                                                                                                                                                     | 1.1 | 39        |
| 182 | Epidemiological Survey-Based Formulae to Approximate Incidence and Prevalence of Neurological Disorders in the United States: a Meta-Analysis. PLoS ONE, 2013, 8, e78490.                                                                                                      | 1.1 | 39        |
| 183 | Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy. Frontiers in Neurology, 2014, 5, 147.                                                                                                                                                                          | 1.1 | 39        |
| 184 | Human Second Trimester Amniotic Fluid Cells are Able to Create Embryoid Body-Like Structures in<br>Vitro and to Show Typical Expression Profiles of Embryonic and Primordial Germ Cells. Cell<br>Transplantation, 2014, 23, 1501-1515.                                         | 1.2 | 39        |
| 185 | A possible new focus for stroke treatment – migrating stem cells. Expert Opinion on Biological<br>Therapy, 2015, 15, 949-958.                                                                                                                                                  | 1.4 | 39        |
| 186 | Neurological disorders and the potential role for stem cells as a therapy. British Medical Bulletin, 2012, 101, 163-181.                                                                                                                                                       | 2.7 | 38        |
| 187 | Extracellular HMGB1 Modulates Glutamate Metabolism Associated with Kainic Acid-Induced<br>Epilepsy-Like Hyperactivity in Primary Rat Neural Cells. Cellular Physiology and Biochemistry, 2017, 41,<br>947-959.                                                                 | 1.1 | 38        |
| 188 | Combination therapy for ischemic stroke: Novel approaches to lengthen therapeutic window of tissue plasminogen activator. Brain Circulation, 2018, 4, 99.                                                                                                                      | 0.7 | 38        |
| 189 | Intracerebral Transplantation of Testis-Derived Sertoli Cells Promotes Functional Recovery in Female<br>Rats with 6-Hydroxydopamine-Induced Hemiparkinsonism. Experimental Neurology, 1997, 148, 388-392.                                                                      | 2.0 | 37        |
| 190 | Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neuroscience and Biobehavioral Reviews, 2012, 36, 177-190.                                                                                             | 2.9 | 37        |
| 191 | Endothelial and Astrocytic Support by Human Bone Marrow Stem Cell Grafts into Symptomatic ALS<br>Mice towards Blood-Spinal Cord Barrier Repair. Scientific Reports, 2017, 7, 884.                                                                                              | 1.6 | 37        |
| 192 | Neuroinflammation, Stem Cells, and Stroke. Stroke, 2022, 53, 1460-1472.                                                                                                                                                                                                        | 1.0 | 37        |
| 193 | Intrastriatal Transplantation of Rat Adrenal Chromaffin Cells Seeded on Microcarrier Beads Promote<br>Long-Term Functional Recovery in Hemiparkinsonian Rats. Experimental Neurology, 1998, 151, 203-214.                                                                      | 2.0 | 36        |
| 194 | Transplantation of post-mitotic human neuroteratocarcinoma-overexpressing Nurr1 cells provides therapeutic benefits in experimental stroke: In vitro evidence of expedited neuronal differentiation and GDNF secretion. Journal of Neuroscience Research, 2007, 85, 1240-1251. | 1.3 | 36        |
| 195 | Oxygen–Glucoseâ€Deprived Rat Primary Neural Cells Exhibit DJ â€1 Translocation into Healthy<br>Mitochondria: A Potent Stroke Therapeutic Target. CNS Neuroscience and Therapeutics, 2014, 20,<br>275-281.                                                                      | 1.9 | 36        |
| 196 | Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal<br>stem cell-derived conditioned medium against cerebral ischemia in vitro. Brain Research, 2019, 1725,<br>146432.                                                                 | 1.1 | 36        |
| 197 | Transplantation of human umbilical cord blood cells in the repair of CNS diseases. Expert Opinion on Biological Therapy, 2004, 4, 121-130.                                                                                                                                     | 1.4 | 35        |
| 198 | Implications of blood-brain barrier disruption in ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2008, 9, 375-376.                                                                                                                                       | 2.3 | 35        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Development of an allogeneic adherent stem cell therapy for treatment of ischemic stroke. Journal of Experimental Stroke & Translational Medicine, 2010, 3, 34-46.                                                                | 0.2 | 35        |
| 200 | Bradykinin receptor agonist facilitates low-dose Cyclosporine-A protection against<br>6-hydroxydopamine neurotoxicity. Brain Research, 2002, 956, 211-220.                                                                        | 1.1 | 34        |
| 201 | Combined cyclosporine-A and methylprednisolone treatment exerts partial and transient neuroprotection against ischemic stroke. Brain Research, 2004, 1018, 32-37.                                                                 | 1.1 | 34        |
| 202 | New hope for stroke patients: mobilization of endogenous stem cells. Cmaj, 2006, 174, 954-955.                                                                                                                                    | 0.9 | 34        |
| 203 | Mankind's first natural stem cell transplant. Journal of Cellular and Molecular Medicine, 2010, 14,<br>488-495.                                                                                                                   | 1.6 | 34        |
| 204 | May the force be with you: Transfer of healthy mitochondria from stem cells to stroke cells. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 367-370.                                                                    | 2.4 | 34        |
| 205 | hNT neurons delay onset of motor deficits in a model of amyotrophic lateral sclerosis. Brain<br>Research Bulletin, 2001, 56, 525-530.                                                                                             | 1.4 | 33        |
| 206 | Neurovascular Aspects of Amyotrophic Lateral Sclerosis. International Review of Neurobiology, 2012, 102, 91-106.                                                                                                                  | 0.9 | 33        |
| 207 | Menstrual Blood-Derived Stem Cells: In Vitro and In Vivo Characterization of Functional Effects.<br>Advances in Experimental Medicine and Biology, 2016, 951, 111-121.                                                            | 0.8 | 33        |
| 208 | Endothelial Progenitor Cells Modulate Inflammation-Associated Stroke Vasculome. Stem Cell Reviews and Reports, 2019, 15, 256-275.                                                                                                 | 5.6 | 33        |
| 209 | Human stem cells transplanted into the rat stroke brain migrate to the spleen via lymphatic and inflammation pathways. Haematologica, 2019, 104, 1062-1073.                                                                       | 1.7 | 33        |
| 210 | Gut–Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders.<br>International Journal of Molecular Sciences, 2022, 23, 1184.                                                                          | 1.8 | 33        |
| 211 | Failure to discriminate conspecifics in amygdaloid-lesioned mice. Pharmacology Biochemistry and Behavior, 1994, 48, 677-680.                                                                                                      | 1.3 | 32        |
| 212 | Fetal intra-nigral ventral mesencephalon and kidney tissue bridge transplantation restores the nigrostriatal dopamine pathway in hemi-parkinsonian rats. Brain Research, 2001, 889, 200-207.                                      | 1.1 | 32        |
| 213 | Reduction of Circulating Endothelial Cells in Peripheral Blood of ALS Patients. PLoS ONE, 2010, 5, e10614.                                                                                                                        | 1.1 | 32        |
| 214 | Combination Treatment of Hypothermia and Mesenchymal Stromal Cells Amplifies Neuroprotection in<br>Primary Rat Neurons Exposed to Hypoxic-Ischemic-Like Injury In Vitro: Role of the Opioid System. PLoS<br>ONE, 2012, 7, e47583. | 1.1 | 32        |
| 215 | Melatonin-Based Therapeutics for Neuroprotection in Stroke. International Journal of Molecular Sciences, 2013, 14, 8924-8947.                                                                                                     | 1.8 | 32        |
| 216 | Neural Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1201, 79-91.                                                                                                                                              | 0.8 | 32        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in<br>Experimental Traumatic Brain Injury Model. PLoS ONE, 2012, 7, e33646.                                                  | 1.1 | 32        |
| 218 | Spinal Cord Stimulation Exerts Neuroprotective Effects against Experimental Parkinson's Disease.<br>PLoS ONE, 2014, 9, e101468.                                                                                      | 1.1 | 32        |
| 219 | Neuroprotective effects of human bone marrow mesenchymal stem cells against cerebral ischemia are mediated in part by an anti-apoptotic mechanism. Neural Regeneration Research, 2019, 14, 597.                      | 1.6 | 32        |
| 220 | Delta Opioid Peptide Augments Functional Effects and Intrastriatal Graft Survival of Rat Fetal Ventral<br>Mesencephalic Cells. Cell Transplantation, 2001, 10, 53-58.                                                | 1.2 | 31        |
| 221 | Increased 8-OHdG levels in the urine, serum, and substantia nigra of hemiparkinsonian rats. Brain<br>Research, 2007, 1133, 49-52.                                                                                    | 1.1 | 31        |
| 222 | Systemic delivery of umbilical cord blood cells for stroke therapy: A review. Restorative Neurology and Neuroscience, 2009, 27, 41-54.                                                                               | 0.4 | 31        |
| 223 | Vascular damage: A persisting pathology common to Alzheimer's disease and traumatic brain injury.<br>Medical Hypotheses, 2013, 81, 842-845.                                                                          | 0.8 | 31        |
| 224 | Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke. Translational Stroke<br>Research, 2015, 6, 421-429.                                                                                 | 2.3 | 31        |
| 225 | Electrical Stimulation Enhances Migratory Ability of Transplanted Bone Marrow Stromal Cells in a<br>Rodent Ischemic Stroke Model. Cellular Physiology and Biochemistry, 2018, 46, 57-68.                             | 1.1 | 31        |
| 226 | Plasma derived from human umbilical cord blood: Potential cellâ€additive or cellâ€substitute therapeutic<br>for neurodegenerative diseases. Journal of Cellular and Molecular Medicine, 2018, 22, 6157-6166.         | 1.6 | 31        |
| 227 | Intravenously Transplanted Human Multilineage-Differentiating Stress-Enduring Cells Afford Brain<br>Repair in a Mouse Lacunar Stroke Model. Stroke, 2020, 51, 601-611.                                               | 1.0 | 31        |
| 228 | Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model. Stem Cells Translational Medicine, 2021, 10, 251-266.                                                 | 1.6 | 31        |
| 229 | Gut dysbiosis in stroke and its implications on Alzheimer's diseaseâ€like cognitive dysfunction. CNS<br>Neuroscience and Therapeutics, 2021, 27, 505-514.                                                            | 1.9 | 31        |
| 230 | When friend turns foe: central and peripheral neuroinflammation in central nervous system injury.<br>Neuroimmunology and Neuroinflammation, 2017, 4, 82.                                                             | 1.4 | 31        |
| 231 | Transplantation of Cryopreserved Human Bone Marrowderived Multipotent Adult Progenitor Cells<br>for Neonatal Hypoxie- Ischemic Injury: Targeting the Hippocampus. Reviews in the Neurosciences, 2006,<br>17, 215-25. | 1.4 | 30        |
| 232 | A Review of Laboratory and Clinical Data Supporting the Safety and Efficacy of Cyclosporin A in<br>Traumatic Brain Injury. Neurosurgery, 2011, 68, 1172-1186.                                                        | 0.6 | 30        |
| 233 | Safety and Feasibility of Remote Limb Ischemic Preconditioning in Patients with Unilateral Middle<br>Cerebral Artery Stenosis and Healthy Volunteers. Cell Transplantation, 2015, 24, 1901-1911.                     | 1.2 | 30        |
| 234 | Potential Role of Humoral IL-6 Cytokine in Mediating Pro-Inflammatory Endothelial Cell Response in<br>Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2018, 19, 423.                     | 1.8 | 30        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Stem cells and G-CSF for treating neuroinflammation in traumatic brain injury: aging as a comorbidity factor. Journal of Neurosurgical Sciences, 2014, 58, 145-9.                                                                                     | 0.3 | 30        |
| 236 | Melatonin-Secreting Pineal Gland: A Novel Tissue Source for Neural Transplantation Therapy in Stroke. Cell Transplantation, 2003, 12, 225-234.                                                                                                        | 1.2 | 29        |
| 237 | Differential response to ischemia in adjacent hippocampalsectors: neuronal death in CA1versus neurogenesis in dentate gyrus. Biotechnology Journal, 2007, 2, 596-607.                                                                                 | 1.8 | 29        |
| 238 | Breaking the Barrier in Stroke: What Should we Know? A Mini-Review. Current Pharmaceutical Design, 2012, 18, 3615-3623.                                                                                                                               | 0.9 | 29        |
| 239 | Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Progress in Brain Research, 2012, 201, 99-117.                                                                                               | 0.9 | 29        |
| 240 | A Step-up Approach for Cell Therapy in Stroke: Translational Hurdles of Bone Marrow-Derived Stem<br>Cells. Translational Stroke Research, 2012, 3, 90-98.                                                                                             | 2.3 | 29        |
| 241 | Cyclosporine A Treatment Abrogates Ischemiaâ€Induced Neuronal Cell Death by Preserving<br>Mitochondrial Integrity through Upregulation of the Parkinson's Diseaseâ€Associated Protein DJâ€1. CNS<br>Neuroscience and Therapeutics, 2016, 22, 602-610. | 1.9 | 29        |
| 242 | Human Bone Marrow Endothelial Progenitor Cell Transplantation into Symptomatic ALS Mice Delays<br>Disease Progression and Increases Motor Neuron Survival by Repairing Blood-Spinal Cord Barrier.<br>Scientific Reports, 2019, 9, 5280.               | 1.6 | 29        |
| 243 | Acute functional effects of cyclosporine-A and methylprednisolone treatment in adult rats exposed to transient ischemic stroke. Life Sciences, 2005, 76, 1503-1512.                                                                                   | 2.0 | 28        |
| 244 | An Update on Translating Stem Cell Therapy for Stroke from Bench to Bedside. Journal of Clinical<br>Medicine, 2013, 2, 220-241.                                                                                                                       | 1.0 | 28        |
| 245 | A Nuclear Attack on Traumatic Brain Injury: Sequestration of Cell Death in the Nucleus. CNS<br>Neuroscience and Therapeutics, 2016, 22, 306-315.                                                                                                      | 1.9 | 28        |
| 246 | Motor activity-mediated partial recovery in ischemic rats. NeuroReport, 2000, 11, 4063-4067.                                                                                                                                                          | 0.6 | 27        |
| 247 | Methanesulfonyl fluoride, an acetylcholinesterase inhibitor, attenuates simple learning and memory deficits in ischemic rats. Brain Research, 2005, 1038, 50-58.                                                                                      | 1.1 | 27        |
| 248 | Evaluation of humoral immune response in adaptive immunity in ALS patients during disease progression. Journal of Neuroimmunology, 2009, 215, 96-101.                                                                                                 | 1.1 | 27        |
| 249 | Behavioral and Histopathological Assessment of Adult Ischemic Rat Brains after Intracerebral<br>Transplantation of NSI-566RSC Cell Lines. PLoS ONE, 2014, 9, e91408.                                                                                  | 1.1 | 27        |
| 250 | The role of DJ-1 in the oxidative stress cell death cascade after stroke. Neural Regeneration Research, 2014, 9, 1430.                                                                                                                                | 1.6 | 27        |
| 251 | Involvement of GDNF in Neuronal Protection against 6-OHDA-Induced Parkinsonism Following<br>Intracerebral Transplantation of Fetal Kidney Tissues in Adult Rats. Neurobiology of Disease, 2001, 8,<br>636-646.                                        | 2.1 | 26        |
| 252 | Do Bone Marrow Cells Generate Neurons?. Archives of Neurology, 2004, 61, 483.                                                                                                                                                                         | 4.9 | 26        |

| #   | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Analysis of DNA variations in promoter region of HCNP gene with Alzheimer's disease. Biochemical and<br>Biophysical Research Communications, 2009, 379, 272-276.                                                                                                                | 1.0 | 26        |
| 254 | Urinary 8â€OHdG elevations in a partial lesion rat model of parkinson's disease correlate with<br>behavioral symptoms and nigrostriatal dopaminergic depletion. Journal of Cellular Physiology, 2011,<br>226, 1390-1398.                                                        | 2.0 | 26        |
| 255 | Acupuncture-Induced Analgesia: The Role of Microglial Inhibition. Cell Transplantation, 2016, 25, 621-628.                                                                                                                                                                      | 1.2 | 26        |
| 256 | Granulocyte colonyâ€stimulating factor promotes behavioral recovery in a mouse model of traumatic<br>brain injury. Journal of Neuroscience Research, 2016, 94, 409-423.                                                                                                         | 1.3 | 26        |
| 257 | LncRNAs Stand as Potent Biomarkers and Therapeutic Targets for Stroke. Frontiers in Aging Neuroscience, 2020, 12, 594571.                                                                                                                                                       | 1.7 | 26        |
| 258 | Enhancing endogenous stem cells in the newborn via delayed umbilical cord clamping. Neural<br>Regeneration Research, 2015, 10, 1359.                                                                                                                                            | 1.6 | 26        |
| 259 | Stem Cells for Neurovascular Repair in Stroke. Journal of Stem Cell Research & Therapy, 2012, s4, 12912.                                                                                                                                                                        | 0.3 | 26        |
| 260 | The testis-derived cultured sertoli cell as a natural Fas-L, secreting cell for immunosuppressive cellular theraphy. Cell Transplantation, 1997, 6, 191-193.                                                                                                                    | 1.2 | 25        |
| 261 | Human Fetal Striatal Transplantation in an Excitotoxic Lesioned Model of Huntington's Disease.<br>Annals of the New York Academy of Sciences, 1997, 831, 452-460.                                                                                                               | 1.8 | 25        |
| 262 | Delta Opioid Receptor and Its Peptide: A Receptor-Ligand Neuroprotection. International Journal of<br>Molecular Sciences, 2013, 14, 17410-17419.                                                                                                                                | 1.8 | 25        |
| 263 | Eye Opener in Stroke. Stroke, 2019, 50, 2197-2206.                                                                                                                                                                                                                              | 1.0 | 25        |
| 264 | Immediate remote ischemic postconditioning reduces cerebral damage in ischemic stroke mice by enhancing leptomeningeal collateral circulation. Journal of Cellular Physiology, 2019, 234, 12637-12645.                                                                          | 2.0 | 25        |
| 265 | Transplantation of Fetal Kidney Cells: Neuroprotection and Neuroregeneration. Cell Transplantation, 2005, 14, 1-9.                                                                                                                                                              | 1.2 | 24        |
| 266 | Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Frontiers in Cellular Neuroscience, 2014, 8, 227.                                                                                                                 | 1.8 | 24        |
| 267 | DJ-1 ameliorates ischemic cell death in vitro possibly via mitochondrial pathway. Neurobiology of<br>Disease, 2014, 62, 56-61.                                                                                                                                                  | 2.1 | 24        |
| 268 | Human parthenogenetic neural stem cell grafts promote multiple regenerative processes in a traumatic brain injury model. Theranostics, 2019, 9, 1029-1046.                                                                                                                      | 4.6 | 24        |
| 269 | Cell encapsulation enhances antidepressant effect of the mesenchymal stem cells and counteracts depressive-like behavior of treatment-resistant depressed rats. Molecular Psychiatry, 2020, 25, 1202-1214.                                                                      | 4.1 | 24        |
| 270 | Intravenously delivered multilineage-differentiating stress enduring cells dampen excessive glutamate<br>metabolism and microglial activation in experimental perinatal hypoxic ischemic encephalopathy.<br>Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1707-1720. | 2.4 | 24        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Cell-Free Extracellular Vesicles Derived from Human Bone Marrow Endothelial Progenitor Cells as<br>Potential Therapeutics for Microvascular Endothelium Restoration in ALS. NeuroMolecular Medicine,<br>2020, 22, 503-516.    | 1.8 | 24        |
| 272 | Cell-Based Therapy for Stroke. Stroke, 2020, 51, 2854-2862.                                                                                                                                                                   | 1.0 | 24        |
| 273 | Healthy mitochondria for stroke cells. Brain Circulation, 2018, 4, 95.                                                                                                                                                        | 0.7 | 24        |
| 274 | Article Commentary: The Testis-Derived Cultured Sertoli Cell as a Natural Fas-L Secreting Cell for<br>Immunosuppressive Cellular Therapy. Cell Transplantation, 1997, 6, 191-193.                                             | 1.2 | 23        |
| 275 | Bilateral Fetal Striatal Grafts in the 3-Nitropropionic Acid-Induced Hypoactive Model of Huntington's<br>Disease. Cell Transplantation, 1998, 7, 131-135.                                                                     | 1.2 | 23        |
| 276 | Cyclosporine A-Induced Hyperactivity in Rats: Is it Mediated by Immunosuppression, Neurotrophism, or<br>Both?. Cell Transplantation, 1999, 8, 153-159.                                                                        | 1.2 | 23        |
| 277 | Multiple transplants of hNT cells into the spinal cord of SOD1 mouse model of familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2006, 7, 227-232.                       | 2.3 | 23        |
| 278 | α-Synuclein is a pathological link and therapeutic target for Parkinson's disease and traumatic brain<br>injury. Medical Hypotheses, 2013, 81, 675-680.                                                                       | 0.8 | 23        |
| 279 | Adult Stem Cell Transplantation: Is Gender a Factor in Stemness?. International Journal of Molecular Sciences, 2014, 15, 15225-15243.                                                                                         | 1.8 | 23        |
| 280 | Gutting the brain of inflammation: A key role of gut microbiome in human umbilical cord blood<br>plasma therapy in Parkinson's disease model. Journal of Cellular and Molecular Medicine, 2019, 23,<br>5466-5474.             | 1.6 | 23        |
| 281 | Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier. Oncotarget, 2018, 9, 10621-10634. | 0.8 | 23        |
| 282 | A review of the pathology and treatment of TBI and PTSD. Experimental Neurology, 2022, 351, 114009.                                                                                                                           | 2.0 | 23        |
| 283 | Post-thaw viability and functionality of cryopreserved rat fetal brain cells cocultured with sertoli cells. Cell Transplantation, 1997, 6, 185-189.                                                                           | 1.2 | 22        |
| 284 | Implications of Neurological Rehabilitation for Advancing Intracerebral Transplantation. Brain<br>Research Bulletin, 1997, 44, 229-232.                                                                                       | 1.4 | 22        |
| 285 | Transplantation therapy for Parkinson's disease. Expert Opinion on Investigational Drugs, 2000, 9,<br>2319-2330.                                                                                                              | 1.9 | 22        |
| 286 | Erythropoietin exerts anti-epileptic effects with the suppression of aberrant new cell formation in the dentate gyrus and upregulation of neuropeptide Y in seizure model of rats. Brain Research, 2009, 1296, 127-136.       | 1.1 | 22        |
| 287 | Directed neural lineage differentiation of adult hippocampal progenitor cells via modulation of hippocampal cholinergic neurostimulating peptide precursor expression. Brain Research, 2010, 1327, 107-117.                   | 1.1 | 22        |
| 288 | Nestin Overexpression Precedes Caspase-3 Upregulation in Rats Exposed to Controlled Cortical Impact<br>Traumatic Brain Injury. Cell Medicine, 2012, 4, 55-63.                                                                 | 5.0 | 22        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Stem cell-paved biobridges facilitate stem transplant and host brain cell interactions for stroke therapy. Brain Research, 2015, 1623, 160-165.                                                                        | 1.1 | 22        |
| 290 | Treating non-motor symptoms of Parkinson's disease with transplantation of stem cells. Expert<br>Review of Neurotherapeutics, 2015, 15, 1231-1240.                                                                     | 1.4 | 22        |
| 291 | Administration of human platelet-rich plasma reduces infarction volume and improves motor function in adult rats with focal ischemic stroke. Brain Research, 2015, 1594, 267-273.                                      | 1.1 | 22        |
| 292 | Hyperbaric oxygen therapy as a potential treatment for post-traumatic stress disorder associated with traumatic brain injury. Neuropsychiatric Disease and Treatment, 2016, Volume 12, 2689-2705.                      | 1.0 | 22        |
| 293 | Transplantation of human bone marrow stem cells into symptomatic ALS mice enhances structural and functional blood-spinal cord barrier repair. Experimental Neurology, 2018, 310, 33-47.                               | 2.0 | 22        |
| 294 | A gut feeling about stroke reveals gut-brain axis' active role in homeostasis and dysbiosis. Journal of<br>Cerebral Blood Flow and Metabolism, 2020, 40, 1132-1134.                                                    | 2.4 | 22        |
| 295 | Hyperbaric oxygen therapy: A new look on treating stroke and traumatic brain injury. Brain<br>Circulation, 2019, 5, 101.                                                                                               | 0.7 | 22        |
| 296 | Cyclosporine-A increases locomotor activity in rats with 6-hydroxydopamine-induced<br>hemiparkinsonism: Relevance to neural transplantation. World Neurosurgery, 1996, 46, 384-388.                                    | 1.3 | 21        |
| 297 | Maternal transplantation of human umbilical cord blood cells provides prenatal therapy in Sanfilippo<br>type B mouse model. FASEB Journal, 2006, 20, 485-487.                                                          | 0.2 | 21        |
| 298 | Adult Stem Cell Therapy for Acute Brain Injury in Children. CNS and Neurological Disorders - Drug<br>Targets, 2008, 7, 361-369.                                                                                        | 0.8 | 21        |
| 299 | Extracardiac-Lodged Mesenchymal Stromal Cells Propel an Inflammatory Response against Myocardial<br>Infarction via Paracrine Effects. Cell Transplantation, 2016, 25, 929-935.                                         | 1.2 | 21        |
| 300 | Regulated and Unregulated Clinical Trials of Stem Cell Therapies for Stroke. Translational Stroke<br>Research, 2017, 8, 93-103.                                                                                        | 2.3 | 21        |
| 301 | Stem Cell-Induced Biobridges as Possible Tools to Aid Neuroreconstruction after CNS Injury.<br>Frontiers in Cell and Developmental Biology, 2017, 5, 51.                                                               | 1.8 | 21        |
| 302 | Pituitary Adenylate Cyclase Activating Polypeptide Elicits Neuroprotection Against Acute Ischemic<br>Neuronal Cell Death Associated with NMDA Receptors. Cellular Physiology and Biochemistry, 2018, 51,<br>1982-1995. | 1.1 | 21        |
| 303 | Phenotypic characteristics of human bone marrow-derived endothelial progenitor cells in vitro support cell effectiveness for repair of the blood-spinal cord barrier in ALS. Brain Research, 2019, 1724, 146428.       | 1.1 | 21        |
| 304 | Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer's<br>Disease: Present and future applications. Brain Research, 2020, 1727, 146535.                                     | 1.1 | 21        |
| 305 | Utilizing pharmacotherapy and mesenchymal stem cell therapy to reduce inflammation following traumatic brain injury. Neural Regeneration Research, 2016, 11, 1379.                                                     | 1.6 | 21        |
| 306 | Cyclosporine-A increases spontaneous and dopamine agonist-induced locomotor behavior in normal rats. Cell Transplantation, 1995, 4, 65-73.                                                                             | 1.2 | 20        |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Hippocampal CA1 cell loss in a non-human primate model of transient global ischemia: A pilot study.<br>Brain Research Bulletin, 2007, 74, 164-171.                                                                                           | 1.4 | 20        |
| 308 | Overexpression of D2/D3 receptors increases efficacy of ropinirole in chronically 6-OHDA-lesioned Parkinsonian rats. Brain Research, 2007, 1160, 113-123.                                                                                    | 1.1 | 20        |
| 309 | Toward Personalized Cell Therapies: Autologous Menstrual Blood Cells for Stroke. Journal of<br>Biomedicine and Biotechnology, 2011, 2011, 1-7.                                                                                               | 3.0 | 20        |
| 310 | Human neural stem cells expressing carboxyl esterase target and inhibit tumor growth of lung cancer brain metastases. Cancer Gene Therapy, 2013, 20, 678-682.                                                                                | 2.2 | 20        |
| 311 | Enhancement of long-term potentiation via muscarinic modulation in the hippocampus of HCNP precursor transgenic mice. Neuroscience Letters, 2015, 597, 1-6.                                                                                  | 1.0 | 20        |
| 312 | Preliminary Reports of Stereotaxic Stem Cell Transplants in Chronic Stroke Patients. Molecular<br>Therapy, 2016, 24, 1710-1711.                                                                                                              | 3.7 | 20        |
| 313 | Blood-Spinal Cord Barrier Alterations in Subacute and Chronic Stages of a Rat Model of Focal<br>Cerebral Ischemia. Journal of Neuropathology and Experimental Neurology, 2016, 75, 673-688.                                                  | 0.9 | 20        |
| 314 | NSIâ€189, a small molecule with neurogenic properties, exerts behavioral, and neurostructural benefits<br>in stroke rats. Journal of Cellular Physiology, 2017, 232, 2731-2740.                                                              | 2.0 | 20        |
| 315 | Chronic Upregulation of Cleaved-Caspase-3 Associated with Chronic Myelin Pathology and<br>Microvascular Reorganization in the Thalamus after Traumatic Brain Injury in Rats. International<br>Journal of Molecular Sciences, 2018, 19, 3151. | 1.8 | 20        |
| 316 | Progress in progestin-based therapies for neurological disorders. Neuroscience and Biobehavioral<br>Reviews, 2021, 122, 38-65.                                                                                                               | 2.9 | 20        |
| 317 | Stem cell therapy for sequestering neuroinflammation in traumatic brain injury: an update on exosome-targeting to the spleen. Journal of Neurosurgical Sciences, 2017, 61, 291-302.                                                          | 0.3 | 20        |
| 318 | Cyclosporine-A enhances choline acetyltransferase immunoreactivity in the septal region of adult rats. Neuroscience Letters, 2000, 279, 73-76.                                                                                               | 1.0 | 19        |
| 319 | Use of Human Umbilical Cord Blood (HUCB) Cells to Repair the Damaged Brain. Current Neurovascular<br>Research, 2004, 1, 269-281.                                                                                                             | 0.4 | 19        |
| 320 | Intracerebral transplantation of carotid body in rats with transient middle cerebral artery occlusion. Brain Research, 2004, 1015, 50-56.                                                                                                    | 1.1 | 19        |
| 321 | Developments in intracerebral stem cell grafts. Expert Review of Neurotherapeutics, 2015, 15, 381-393.                                                                                                                                       | 1.4 | 19        |
| 322 | Granulocyte-colony stimulating factor promotes brain repair following traumatic brain injury by<br>recruitment of microglia and increasing neurotrophic factor expression. Restorative Neurology and<br>Neuroscience, 2016, 34, 415-431.     | 0.4 | 19        |
| 323 | Breaking the Blood–Brain Barrier with Mannitol to Aid Stem Cell Therapeutics in the Chronic Stroke<br>Brain. Cell Transplantation, 2016, 25, 1453-1460.                                                                                      | 1.2 | 19        |
| 324 | Kainic Acid-Induced Golgi Complex Fragmentation/Dispersal Shifts the Proteolysis of Reelin in Primary<br>Rat Neuronal Cells: An In Vitro Model of Early Stage Epilepsy. Molecular Neurobiology, 2016, 53,<br>1874-1883.                      | 1.9 | 19        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | A Novel Partial MHC Class II Construct, DRmQ, Inhibits Central and Peripheral Inflammatory Responses to Promote Neuroprotection in Experimental Stroke. Translational Stroke Research, 2020, 11, 831-836.                                           | 2.3 | 19        |
| 326 | Melatonin—A Potent Therapeutic for Stroke and Stroke-Related Dementia. Antioxidants, 2020, 9, 672.                                                                                                                                                  | 2.2 | 19        |
| 327 | Mesenchymal Stem Cell-Induced Anti-Neuroinflammation Against Traumatic Brain Injury. Cell<br>Transplantation, 2021, 30, 096368972110357.                                                                                                            | 1.2 | 19        |
| 328 | Clial cell survival is enhanced during melatoninâ€induced neuroprotection against cerebral ischemia.<br>FASEB Journal, 2000, 14, 1307-1317.                                                                                                         | 0.2 | 19        |
| 329 | Gene therapy, cell transplantation and stroke. Frontiers in Bioscience - Landmark, 2006, 11, 1090.                                                                                                                                                  | 3.0 | 18        |
| 330 | Nanotechnology as an Adjunct Tool for Transplanting Engineered Cells and Tissues. Current<br>Molecular Medicine, 2007, 7, 609-618.                                                                                                                  | 0.6 | 18        |
| 331 | No Pain, No Gain: Lack of Exercise Obstructs Neurogenesis. Cell Transplantation, 2015, 24, 591-597.                                                                                                                                                 | 1.2 | 18        |
| 332 | Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its<br>Treatment. International Journal of Molecular Sciences, 2018, 19, 2127.                                                                             | 1.8 | 18        |
| 333 | Discrete mitochondrial aberrations in the spinal cord of sporadic ALS patients. Journal of<br>Neuroscience Research, 2018, 96, 1353-1366.                                                                                                           | 1.3 | 18        |
| 334 | T-Regulatory Cells Confer Increased Myelination and Stem Cell Activity after Stroke-Induced White<br>Matter Injury. Journal of Clinical Medicine, 2019, 8, 537.                                                                                     | 1.0 | 18        |
| 335 | Utilizing Delta Opioid Receptors and Peptides for Cytoprotection: Implications in Stroke and Other<br>Neurological Disorders. CNS and Neurological Disorders - Drug Targets, 2017, 16, 414-424.                                                     | 0.8 | 18        |
| 336 | Stem Cell Research in Cell Transplantation: Sources, Geopolitical Influence, and Transplantation. Cell Transplantation, 2010, 19, 1493-1509.                                                                                                        | 1.2 | 17        |
| 337 | Contemplating stem cell therapy for epilepsy-induced neuropsychiatric symptoms. Neuropsychiatric<br>Disease and Treatment, 2017, Volume 13, 585-596.                                                                                                | 1.0 | 17        |
| 338 | Translating intracarotid artery transplantation of bone marrow-derived NCS-01 cells for ischemic stroke: Behavioral and histological readouts and mechanistic insights into stem cell therapy. Stem Cells Translational Medicine, 2020, 9, 203-220. | 1.6 | 17        |
| 339 | An Extra Breath of Fresh Air: Hyperbaric Oxygenation as a Stroke Therapeutic. Biomolecules, 2020, 10,<br>1279.                                                                                                                                      | 1.8 | 17        |
| 340 | Vagus Nerve Stimulation with Mild Stimulation Intensity Exerts Anti-Inflammatory and<br>Neuroprotective Effects in Parkinson's Disease Model Rats. Biomedicines, 2021, 9, 789.                                                                      | 1.4 | 17        |
| 341 | T155g-Immortalized Kidney Cells Produce Growth Factors and Reduce Sequelae of Cerebral Ischemia.<br>Cell Transplantation, 2002, 11, 251-259.                                                                                                        | 1.2 | 17        |
| 342 | A Dual Role for Hyperbaric Oxygen in Stroke Neuroprotection: Preconditioning of the Brain and Stem Cells. Conditioning Medicine, 2018, 1, 151-166.                                                                                                  | 1.3 | 17        |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Transplants of encapsulated rat choroid plexus cells exert neuroprotection in a rodent model of<br>Huntington's disease. Cell Transplantation, 2008, 16, 987-92.                               | 1.2 | 17        |
| 344 | A Role of the Choroid Plexus in Transplantation Therapy. Cell Transplantation, 2005, 14, 715-725.                                                                                              | 1.2 | 16        |
| 345 | Intrapallidal metabotropic glutamate receptor activation in a rat model of Parkinson's disease:<br>Behavioral and histological analyses. Brain Research, 2008, 1203, 189-196.                  | 1.1 | 16        |
| 346 | Intravenous administration of human umbilical cord blood cells in an animal model of MPS III B.<br>Journal of Comparative Neurology, 2009, 515, 93-101.                                        | 0.9 | 16        |
| 347 | Suppressed cytokine expression immediatey following traumatic brain injury in neonatal rats indicates an expeditious endogenous anti-inflammatory response. Brain Research, 2014, 1559, 65-71. | 1.1 | 16        |
| 348 | G-CSF as an Adjunctive Therapy with Umbilical Cord Blood Cell Transplantation for Traumatic Brain<br>Injury. Cell Transplantation, 2015, 24, 447-457.                                          | 1.2 | 16        |
| 349 | Stroke and cardiac cell death: Two peas in a pod. Clinical Neurology and Neurosurgery, 2016, 142, 145-147.                                                                                     | 0.6 | 16        |
| 350 | Cell Therapy in Parkinson's Disease: Host Brain Repair Machinery Gets a Boost From Stem Cell Grafts.<br>Stem Cells, 2017, 35, 1443-1445.                                                       | 1.4 | 16        |
| 351 | The brain and eye: Treating cerebral and retinal ischemia through mitochondrial transfer.<br>Experimental Biology and Medicine, 2019, 244, 1485-1492.                                          | 1.1 | 16        |
| 352 | Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in<br>Experimental Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 164.                   | 1.7 | 16        |
| 353 | Semi-automated measurement of vascular tortuosity and its implications for mechanical thrombectomy performance. Neuroradiology, 2021, 63, 381-389.                                             | 1.1 | 16        |
| 354 | Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules, 2021, 11, 1316.                                                                                      | 1.8 | 16        |
| 355 | Chronic inflammation and apoptosis propagate in ischemic cerebellum and heart of non-human primates. Oncotarget, 2017, 8, 102820-102834.                                                       | 0.8 | 16        |
| 356 | Microcarrier enhanced survival of human and rat fetal ventral mesencephalon cells implanted in the rat striatum. Cell Transplantation, 1997, 6, 579-584.                                       | 1.2 | 15        |
| 357 | Prepro-thyrotropin-releasing hormone 178-199 exerts partial protection against cerebral ischemia in adult rats. NeuroReport, 1999, 10, 3501-3505.                                              | 0.6 | 15        |
| 358 | Artificial lighting conditions and melatonin alter motor performance in adult rats. Neuroscience<br>Letters, 2000, 280, 33-36.                                                                 | 1.0 | 15        |
| 359 | Potential of Choroid Plexus Epithelial Cell Grafts for Neuroprotection in Huntington's Disease: What<br>Remains Before Considering Clinical Trials. Neurotoxicity Research, 2009, 15, 205-211. | 1.3 | 15        |
| 360 | Stem Cell Transplants at Childbirth. Stem Cell Reviews and Reports, 2010, 6, 27-30.                                                                                                            | 5.6 | 15        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Peri-hemorrhagic degeneration accompanies stereotaxic collagenase-mediated cortical hemorrhage in mouse. Brain Research, 2010, 1355, 228-239.                                                               | 1.1 | 15        |
| 362 | Immunological Aspects in Amyotrophic Lateral Sclerosis. Translational Stroke Research, 2012, 3, 331-340.                                                                                                    | 2.3 | 15        |
| 363 | Growth factor therapy sequesters inflammation in affording neuroprotection in cerebrovascular diseases. Expert Review of Neurotherapeutics, 2016, 16, 915-926.                                              | 1.4 | 15        |
| 364 | Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement. Advances in Experimental Medicine and Biology, 2018, 1079, 87-91.                                                  | 0.8 | 15        |
| 365 | Use of a combination strategy to improve neuroprotection and neuroregeneration in a rat model of acute spinal cord injury. Neural Regeneration Research, 2019, 14, 1060.                                    | 1.6 | 15        |
| 366 | Lovastatin Inhibits RhoA to Suppress Canonical Wnt/β-Catenin Signaling and Alternative Wnt-YAP/TAZ<br>Signaling in Colon Cancer. Cell Transplantation, 2022, 31, 096368972210757.                           | 1.2 | 15        |
| 367 | Transplantation of carotid body cells in the treatment of neurological disorders. Neuroscience and<br>Biobehavioral Reviews, 2005, 28, 803-810.                                                             | 2.9 | 14        |
| 368 | Toxicity of semaphorin3A for dopaminergic neurons. Neuroscience Letters, 2005, 382, 61-65.                                                                                                                  | 1.0 | 14        |
| 369 | Blood-brain barrier impairment in MPS III patients. BMC Neurology, 2013, 13, 174.                                                                                                                           | 0.8 | 14        |
| 370 | Advances in the cell-based treatment of neonatal hypoxic–ischemic brain injury. Future Neurology,<br>2013, 8, 193-203.                                                                                      | 0.9 | 14        |
| 371 | Umbilical cord blood cell and granulocyte-colony stimulating factor: combination therapy for traumatic brain injury. Regenerative Medicine, 2014, 9, 409-412.                                               | 0.8 | 14        |
| 372 | Plasma and brain pharmacokinetics of previously unexplored lithium salts. RSC Advances, 2014, 4, 12362-12365.                                                                                               | 1.7 | 14        |
| 373 | Potential new complication in drug therapy development for amyotrophic lateral sclerosis. Expert<br>Review of Neurotherapeutics, 2016, 16, 1397-1405.                                                       | 1.4 | 14        |
| 374 | Stem Cell Recipes of Bone Marrow and Fish: Just What the Stroke Doctors Ordered. Stem Cell Reviews and Reports, 2017, 13, 192-197.                                                                          | 5.6 | 14        |
| 375 | A Gutsy Move for Cell-Based Regenerative Medicine in Parkinson's Disease: Targeting the Gut<br>Microbiome to Sequester Inflammation and Neurotoxicity. Stem Cell Reviews and Reports, 2019, 15,<br>690-702. | 1.7 | 14        |
| 376 | Traumatic brain injury. CNS Neuroscience and Therapeutics, 2020, 26, 593-594.                                                                                                                               | 1.9 | 14        |
| 377 | Biobridge concept in stem cell therapy for ischemic stroke. Journal of Neurosurgical Sciences, 2016, 61, 173-179.                                                                                           | 0.3 | 14        |
| 378 | Human Umbilical Cord Blood for Transplantation Therapy in Myocardial Infarction. Journal of Stem<br>Cell Research & Therapy, 2013, , .                                                                      | 0.3 | 14        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | In vitro non-viral lipofectamine delivery of the gene for glial cell line-derived neurotrophic factor to human umbilical cord blood CD34+ cells. Brain Research, 2010, 1325, 147-154.                 | 1.1 | 13        |
| 380 | Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases. International<br>Journal of Molecular Sciences, 2016, 17, 607.                                                      | 1.8 | 13        |
| 381 | An update on intracerebral stem cell grafts. Expert Review of Neurotherapeutics, 2018, 18, 557-572.                                                                                                   | 1.4 | 13        |
| 382 | Drug-like delivery methods of stem cells as biologics for stroke. Expert Opinion on Drug Delivery, 2019, 16, 823-833.                                                                                 | 2.4 | 13        |
| 383 | Anatomical Links between White Matter Hyperintensity and Medial Temporal Atrophy Reveal Impairment of Executive Functions. , 2019, 10, 711.                                                           |     | 13        |
| 384 | Stand alone or join forces? Stem cell therapy for stroke. Expert Opinion on Biological Therapy, 2019, 19, 25-33.                                                                                      | 1.4 | 13        |
| 385 | Energy Metabolism Analysis of Three Different Mesenchymal Stem Cell Populations of Umbilical Cord<br>Under Normal and Pathologic Conditions. Stem Cell Reviews and Reports, 2020, 16, 585-595.        | 1.7 | 13        |
| 386 | Spleen participation in partial MHC class II construct neuroprotection in stroke. CNS Neuroscience and Therapeutics, 2020, 26, 663-669.                                                               | 1.9 | 13        |
| 387 | Inflammation-relevant microbiome signature of the stroke brain, gut, spleen, and thymus and the impact of exercise. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3200-3212.               | 2.4 | 13        |
| 388 | A brief physical activity protects against ischemic stroke. Brain Circulation, 2019, 5, 112.                                                                                                          | 0.7 | 13        |
| 389 | Transplantation of testis-derived sertoli cells into the mammalian brain. Transplantation Proceedings, 1997, 29, 1926-1928.                                                                           | 0.3 | 12        |
| 390 | Dietary Supplementations as Neuroprotective Therapies: Focus on NT-020 Diet Benefits in a Rat Model of Stroke. International Journal of Molecular Sciences, 2012, 13, 7424-7444.                      | 1.8 | 12        |
| 391 | Cerebral Aneurysm as an Exacerbating Factor in Stroke Pathology and a Therapeutic Target for Neuroprotection. Current Pharmaceutical Design, 2012, 18, 3663-3669.                                     | 0.9 | 12        |
| 392 | Menstrual blood transplantation for ischemic stroke: Therapeutic mechanisms and practical issues.<br>Interventional Medicine & Applied Science, 2012, 4, 59-68.                                       | 0.2 | 12        |
| 393 | Bone Marrow-Derived Stem Cell Therapy for Metastatic Brain Cancers. Cell Transplantation, 2015, 24, 625-630.                                                                                          | 1.2 | 12        |
| 394 | Brain Region‧pecific Histopathological Effects of Varying Trajectories of Controlled Cortical Impact<br>Injury Model of Traumatic Brain Injury. CNS Neuroscience and Therapeutics, 2016, 22, 200-211. | 1.9 | 12        |
| 395 | Hippocampal Cholinergic Neurostimulating Peptide as a Possible Modulating Factor against<br>Glutamatergic Neuronal Disability by Amyloid Oligomers. Cell Transplantation, 2017, 26, 1542-1550.        | 1.2 | 12        |
| 396 | Stem Cell Repair of the Microvascular Damage in Stroke. Cells, 2020, 9, 2075.                                                                                                                         | 1.8 | 12        |

| #   | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 397 | Mitochondrial activity of human umbilical cord mesenchymal stem cells. Brain Circulation, 2021, 7, 33.                                                                                                                                                                                     | 0.7 | 12        |
| 398 | Cell-based treatment for perinatal hypoxic-ischemic encephalopathy. Brain Circulation, 2021, 7, 13.                                                                                                                                                                                        | 0.7 | 12        |
| 399 | Fast-tracking regenerative medicine for traumatic brain injury. Neural Regeneration Research, 2020, 15, 1179.                                                                                                                                                                              | 1.6 | 12        |
| 400 | Enriched Environment and Exercise Enhance Stem Cell Therapy for Stroke, Parkinson's Disease, and<br>Huntington's Disease. Frontiers in Cell and Developmental Biology, 2022, 10, 798826.                                                                                                   | 1.8 | 12        |
| 401 | Exosomes Derived From Mesenchymal Stem Cells Pretreated With Ischemic Rat Heart Extracts Promote Angiogenesis via the Delivery of DMBT1. Cell Transplantation, 2022, 31, 096368972211028.                                                                                                  | 1.2 | 12        |
| 402 | Chronic administration of cyclosporine A does not impair memory retention in rats. NeuroReport, 1997, 8, 673-676.                                                                                                                                                                          | 0.6 | 11        |
| 403 | Chronic cyclosporine-A injection in rats with damaged blood-brain barrier does not impair retention of passive avoidance. Neuroscience Research, 1998, 32, 195-200.                                                                                                                        | 1.0 | 11        |
| 404 | Behavioral, hormonal and histological stress markers of anxiety-separation in postnatal rats are<br>reduced by prepro-thyrotropin-releasing hormone 178–199. Neuroscience Letters, 2002, 321, 85-89.                                                                                       | 1.0 | 11        |
| 405 | Regeneration of Neuronal Cells following Cerebral Injury. Frontiers of Neurology and Neuroscience, 2013, 32, 54-61.                                                                                                                                                                        | 3.0 | 11        |
| 406 | Advancing critical care medicine with stem cell therapy and hypothermia for cerebral palsy.<br>NeuroReport, 2013, 24, 1067-1071.                                                                                                                                                           | 0.6 | 11        |
| 407 | Insulin-associated neuroinflammatory pathways as therapeutic targets for traumatic brain injury.<br>Medical Hypotheses, 2014, 82, 171-174.                                                                                                                                                 | 0.8 | 11        |
| 408 | Stroke therapy: the potential of amniotic fluid-derived stem cells. Future Neurology, 2015, 10, 321-326.                                                                                                                                                                                   | 0.9 | 11        |
| 409 | The future of stem cell therapy for stroke rehabilitation. Future Neurology, 2015, 10, 313-319.                                                                                                                                                                                            | 0.9 | 11        |
| 410 | Delta Opioid Receptor and Peptide: A Dynamic Therapy for Stroke and Other Neurological Disorders.<br>Handbook of Experimental Pharmacology, 2017, 247, 277-299.                                                                                                                            | 0.9 | 11        |
| 411 | Genetic and Histological Alterations Reveal Key Role of Prostaglandin Synthase and Cyclooxygenase 1<br>and 2 in Traumatic Brain Injury–Induced Neuroinflammation in the Cerebral Cortex of Rats Exposed to<br>Moderate Fluid Percussion Injury. Cell Transplantation, 2017, 26, 1301-1313. | 1.2 | 11        |
| 412 | Selective endovascular cooling for stroke entails brain-derived neurotrophic factor and splenic IL-10 modulation. Brain Research, 2019, 1722, 146380.                                                                                                                                      | 1.1 | 11        |
| 413 | Rhynchophylline promotes stem cell autonomous metabolic homeostasis. Cytotherapy, 2020, 22, 106-113.                                                                                                                                                                                       | 0.3 | 11        |
| 414 | Fighting the War Against COVID-19 via Cell-Based Regenerative Medicine: Lessons Learned from 1918<br>Spanish Flu and Other Previous Pandemics. Stem Cell Reviews and Reports, 2021, 17, 9-32.                                                                                              | 1.7 | 11        |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 415 | Pituitary Adenylate Cyclase-Activating Polypeptide: A Potent Therapeutic Agent in Oxidative Stress.<br>Antioxidants, 2021, 10, 354.                                                                                  | 2.2  | 11        |
| 416 | Motor Recovery after Chronic Spinal Cord Transection in Rats: A Proof-of-Concept Study Evaluating a Combined Strategy. CNS and Neurological Disorders - Drug Targets, 2019, 18, 52-62.                               | 0.8  | 11        |
| 417 | Asymmetrical behavior in rats following striatal lesions and fetal transplants: the elevated body swing test. Restorative Neurology and Neuroscience, 1995, 9, 15-19.                                                | 0.4  | 10        |
| 418 | Article Commentary: Neural Transplantation in the New Millenium. Cell Transplantation, 2002, 11, 615-618.                                                                                                            | 1.2  | 10        |
| 419 | Stem Cell-Like Dog Placenta Cells Afford Neuroprotection against Ischemic Stroke Model via Heat<br>Shock Protein Upregulation. PLoS ONE, 2013, 8, e76329.                                                            | 1.1  | 10        |
| 420 | Estrogen Replacement Therapy for Stroke. Cell Medicine, 2014, 6, 111-122.                                                                                                                                            | 5.0  | 10        |
| 421 | Treating childhood traumatic brain injury with autologous stem cell therapy. Expert Opinion on<br>Biological Therapy, 2018, 18, 515-524.                                                                             | 1.4  | 10        |
| 422 | Fatty acid chemical mediator provides insights into the pathology and treatment of Parkinson's<br>disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>6322-6324. | 3.3  | 10        |
| 423 | Eyeballing stroke: Blood flow alterations in the eye and visual impairments following transient<br>middle cerebral artery occlusion in adult rats. Cell Transplantation, 2020, 29, 096368972090580.                  | 1.2  | 10        |
| 424 | Beyond the language barrier. Nature, 1996, 384, 608-608.                                                                                                                                                             | 13.7 | 9         |
| 425 | Article Commentary: G-CSF-Mobilized Human Peripheral Blood for Transplantation Therapy in Stroke.<br>Cell Transplantation, 2003, 12, 447-448.                                                                        | 1.2  | 9         |
| 426 | Article Commentary: Cell Transplantation: Stem Cells in the Spotlight. Cell Transplantation, 2005, 14, 519-526.                                                                                                      | 1.2  | 9         |
| 427 | Viral vector strategy for glial cell line-derived neurotrophic factor therapy for stroke. Frontiers in<br>Bioscience - Landmark, 2006, 11, 1101.                                                                     | 3.0  | 9         |
| 428 | Article Commentary: Cell Transplantation: Toward Cell Therapy. Cell Transplantation, 2006, 15, 665-673.                                                                                                              | 1.2  | 9         |
| 429 | Remyelinating the transected peripheral nerve by fabricated Schwann cells derived from bone marrow. Experimental Neurology, 2010, 225, 243-245.                                                                      | 2.0  | 9         |
| 430 | Understanding the pathology and treatment of traumatic brain injury and posttraumatic stress<br>disorder: a therapeutic role for hyperbaric oxygen therapy. Expert Review of Neurotherapeutics, 2016,<br>16, 61-70.  | 1.4  | 9         |
| 431 | Extension of Tissue Plasminogen Activator Treatment Window by Granulocyte-Colony Stimulating<br>Factor in a Thromboembolic Rat Model of Stroke. International Journal of Molecular Sciences, 2018,<br>19, 1635.      | 1.8  | 9         |
| 432 | Multifaceted Effects of Delta Opioid Receptors and DADLE in Diseases of the Nervous System. Current Drug Discovery Technologies, 2018, 15, 94-108.                                                                   | 0.6  | 9         |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 433 | Stem cells have the potential to rejuvenate regenerative medicine research. Medical Science Monitor, 2010, 16, RA197-217.                                                                                                   | 0.5 | 9         |
| 434 | Rats receiving systemic 3-nitropropionic acid demonstrate impairment of memory in Morris water maze. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 561-566.                                                   | 1.2 | 9         |
| 435 | Nicotine Blocks Kainic Acid-Induced Wet Dog Shakes in Rats. Neuropsychopharmacology, 1995, 13, 261-264.                                                                                                                     | 2.8 | 8         |
| 436 | THE CASE FOR AN ETHICS RESEARCH CONSORTIUM FOR EMERGING TECHNOLOGIES: PUBLIC PERCEPTION OF STEM CELL RESEARCH AND DEVELOPMENT. Technology and Innovation, 2010, 12, 21-28.                                                  | 0.2 | 8         |
| 437 | Tales of Biomaterials, Molecules, and Cells for Repairing and Treating Brain Dysfunction. Current<br>Stem Cell Research and Therapy, 2011, 6, 171-189.                                                                      | 0.6 | 8         |
| 438 | Suppression of Astrocyte Lineage in Adult Hippocampal Progenitor Cells Expressing Hippocampal<br>Cholinergic Neurostimulating Peptide Precursor in an in Vivo Ischemic Model. Cell Transplantation,<br>2012, 21, 2159-2169. | 1.2 | 8         |
| 439 | Stroke in the eye of the beholder. Medical Hypotheses, 2013, 80, 411-415.                                                                                                                                                   | 0.8 | 8         |
| 440 | Regenerative Medicine for Epilepsy: From Basic Research to Clinical Application. International Journal of Molecular Sciences, 2013, 14, 23390-23401.                                                                        | 1.8 | 8         |
| 441 | Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opinion on Biological<br>Therapy, 2017, 17, 837-851.                                                                                        | 1.4 | 8         |
| 442 | Effects of an Inhibitor of Monocyte Recruitment on Recovery from Traumatic Brain Injury in Mice<br>Treated with Granulocyte Colony-Stimulating Factor. International Journal of Molecular Sciences,<br>2017, 18, 1418.      | 1.8 | 8         |
| 443 | Harnessing neural stem cells for treating psychiatric symptoms associated with fetal alcohol spectrum disorder and epilepsy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 10-22.               | 2.5 | 8         |
| 444 | Application of Muse Cell Therapy to Stroke. Advances in Experimental Medicine and Biology, 2018, 1103, 167-186.                                                                                                             | 0.8 | 8         |
| 445 | Characteristics and prognostic factors of Parkinson's disease patients with abnormal postures<br>subjected to subthalamic nucleus deep brain stimulation. Parkinsonism and Related Disorders, 2018, 57,<br>44-49.           | 1.1 | 8         |
| 446 | Reduced Cholinergic Activity in the Hippocampus of Hippocampal Cholinergic Neurostimulating<br>Peptide Precursor Protein Knockout Mice. International Journal of Molecular Sciences, 2019, 20, 5367.                        | 1.8 | 8         |
| 447 | Advancing Stem Cell Therapy for Repair of Damaged Lung Microvasculature in Amyotrophic Lateral Sclerosis. Cell Transplantation, 2020, 29, 096368972091349.                                                                  | 1.2 | 8         |
| 448 | Bone Marrow-Derived NCS-01 Cells Advance a Novel Cell-Based Therapy for Stroke. International<br>Journal of Molecular Sciences, 2020, 21, 2845.                                                                             | 1.8 | 8         |
| 449 | Recent advances in cell therapy for stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2797-2799.                                                                                                             | 2.4 | 8         |
| 450 | Drug- and cell-based therapies for targeting neuroinflammation in traumatic brain injury. Neural<br>Regeneration Research, 2016, 11, 1575.                                                                                  | 1.6 | 8         |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 451 | Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications. Stem Cells<br>International, 2022, 2022, 1-23.                                                                                                                                     | 1.2 | 8         |
| 452 | Mesenchymal Stromal Cells in Ischemic Brain Injury. Cells, 2022, 11, 1013.                                                                                                                                                                                           | 1.8 | 8         |
| 453 | Contraceptive drug, Nestorone, enhances stem cell-mediated remodeling of the stroke brain by<br>dampening inflammation and rescuing mitochondria. Free Radical Biology and Medicine, 2022, 183,<br>138-145.                                                          | 1.3 | 8         |
| 454 | Oligodendrocytes Engineered with Migratory Proteins as Effective Graft Source for Cell<br>Transplantation in Multiple Sclerosis. Cell Medicine, 2014, 6, 123-127.                                                                                                    | 5.0 | 7         |
| 455 | Pathological links between stroke and cardiac arrest. Chinese Neurosurgical Journal, 2016, 2, .                                                                                                                                                                      | 0.3 | 7         |
| 456 | Comparing the effect of the novel ionic cocrystal of lithium salicylate proline (LISPRO) with lithium<br>carbonate and lithium salicylate on memory and behavior in female APPswe/PS1dE9 Alzheimer's mice.<br>Journal of Neuroscience Research, 2019, 97, 1066-1080. | 1.3 | 7         |
| 457 | Harnessing the anti-inflammatory properties of stem cells for transplant therapy in hemorrhagic stroke. Brain Hemorrhages, 2020, 1, 24-33.                                                                                                                           | 0.4 | 7         |
| 458 | Exendin-4 for Parkinson's disease. Brain Circulation, 2021, 7, 41.                                                                                                                                                                                                   | 0.7 | 7         |
| 459 | Extracellular vesicle-based therapy for amyotrophic lateral sclerosis. Brain Circulation, 2021, 7, 23.                                                                                                                                                               | 0.7 | 7         |
| 460 | Stem cell-derived extracellular vesicles as potential mechanism for repair of microvascular damage<br>within and outside of the central nervous system in amyotrophic lateral sclerosis: perspective<br>schema. Neural Regeneration Research, 2021, 16, 680.         | 1.6 | 7         |
| 461 | Umbilical Cord Blood Cells in the Repair of Central Nervous System Diseases. , 2014, , 269-287.                                                                                                                                                                      |     | 7         |
| 462 | The Battle of the Sexes for Stroke Therapy: Female- Versus Male-Derived Stem Cells. CNS and Neurological Disorders - Drug Targets, 2013, 12, 405-412.                                                                                                                | 0.8 | 7         |
| 463 | Gut Microbiome: Lactation, Childbirth, Lung Dysbiosis, Animal Modeling, Stem Cell Treatment, and CNS<br>Disorders. CNS and Neurological Disorders - Drug Targets, 2020, 18, 687-694.                                                                                 | 0.8 | 7         |
| 464 | Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with<br>D-alanine D-leucine enkephalin in brain injury. Neural Regeneration Research, 2018, 13, 2029.                                                                       | 1.6 | 7         |
| 465 | Amnion-derived stem cell transplantation: A novel treatment for neurological disorders. Brain<br>Circulation, 2016, 2, 1.                                                                                                                                            | 0.7 | 7         |
| 466 | Current challenges in regenerative medicine for central nervous system disorders. Brain Circulation, 2016, 2, 105.                                                                                                                                                   | 0.7 | 7         |
| 467 | Amniotic fluid as a source of engraftable stem cells. Brain Circulation, 2017, 3, 175.                                                                                                                                                                               | 0.7 | 7         |
| 468 | Treating Metastatic Brain Cancers With Stem Cells. Frontiers in Molecular Neuroscience, 2021, 14, 749716.                                                                                                                                                            | 1.4 | 7         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 469 | Extended Ischemic Recovery After Implantation of Human Mesenchymal Stem Cell Aggregates Indicated by Sodium MRI at 21.1ÂT. Translational Stroke Research, 2022, 13, 543-555.                                       | 2.3 | 7         |
| 470 | Supplementation With Vitamin E, Zinc, Selenium, and Copper Re-Establishes T-Cell Function and<br>Improves Motor Recovery in a Rat Model of Spinal Cord Injury. Cell Transplantation, 2022, 31,<br>096368972211098. | 1.2 | 7         |
| 471 | Suppressed acoustic startle response in traumatic brain injury masks post-traumatic stress disorder<br>hyper-responsivity. NeuroReport, 2018, 29, 939-944.                                                         | 0.6 | 6         |
| 472 | High-Mobility Group Box-1-Induced Angiogenesis After Indirect Bypass Surgery in a Chronic Cerebral<br>Hypoperfusion Model. NeuroMolecular Medicine, 2019, 21, 391-400.                                             | 1.8 | 6         |
| 473 | Multipronged Attack of Stem Cell Therapy in Treating the Neurological and Neuropsychiatric Symptoms of Epilepsy. Frontiers in Pharmacology, 2021, 12, 596287.                                                      | 1.6 | 6         |
| 474 | Revascularization Outcome Prediction for A Direct Aspiration-First Pass Technique (ADAPT) from Pre-Treatment Imaging and Machine Learning. Brain Sciences, 2021, 11, 1321.                                         | 1.1 | 6         |
| 475 | Transplantation of human umbilical cord blood cells for the repair of myocardial infarction. Medical Science Monitor, 2008, 14, RA163-72.                                                                          | 0.5 | 6         |
| 476 | Effects of Lovastatin on Brain Cancer Cells. Cell Transplantation, 2022, 31, 096368972211029.                                                                                                                      | 1.2 | 6         |
| 477 | A rapid assessment of stimulus properties of morphine. Life Sciences, 1995, 57, PL171-PL174.                                                                                                                       | 2.0 | 5         |
| 478 | Footshock facilitates discrimination of stimulus properties of morphine. Life Sciences, 1997, 61, 1045-1049.                                                                                                       | 2.0 | 5         |
| 479 | Article Commentary: Healing a Broken Heart with Stem Cells. Cell Transplantation, 2004, 13, 725-728.                                                                                                               | 1.2 | 5         |
| 480 | Differential expression of HCNP-related antigens in hippocampus in senescence-accelerated mice. Brain<br>Research, 2007, 1158, 169-175.                                                                            | 1.1 | 5         |
| 481 | International Placenta Stem Cell Society: Planting the Seed for Placenta Stem Cell Research. Cell<br>Transplantation, 2010, 19, 507-508.                                                                           | 1.2 | 5         |
| 482 | Editorial: [Hot Topics: The Blood Brain Barrier in Stroke]. Current Pharmaceutical Design, 2012, 18, 3613-3614.                                                                                                    | 0.9 | 5         |
| 483 | Laterality of cervical disc herniation. European Spine Journal, 2013, 22, 178-182.                                                                                                                                 | 1.0 | 5         |
| 484 | Diabetes insipidus contributes to traumatic brain injury pathology via CD36 neuroinflammation.<br>Medical Hypotheses, 2013, 81, 936-939.                                                                           | 0.8 | 5         |
| 485 | The potential of neural stem cell transplantation for the treatment of fetal alcohol spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 54, 149-156.                         | 2.5 | 5         |
| 486 | Histopathological and Behavioral Assessments of Aging Effects on Stem Cell Transplants in an Experimental Traumatic Brain Injury. Methods in Molecular Biology, 2018, 2045, 299-310.                               | 0.4 | 5         |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 487 | Detection of endothelial cell-associated human DNA reveals transplanted human bone marrow stem cell engraftment into CNS capillaries of ALS mice. Brain Research Bulletin, 2021, 170, 22-28.                                                           | 1.4 | 5         |
| 488 | Stroke gets in your eyes: stroke-induced retinal ischemia and the potential of stem cell therapy. Neural Regeneration Research, 2020, 15, 1014.                                                                                                        | 1.6 | 5         |
| 489 | Detrimental effects of physical inactivity on neurogenesis. Brain Circulation, 2016, 2, 80.                                                                                                                                                            | 0.7 | 5         |
| 490 | Cyclosporine-A reduces spontaneous place preference in adult rats. Neuroscience Letters, 1999, 267, 169-172.                                                                                                                                           | 1.0 | 4         |
| 491 | Anomaly in aortic arch alters pathological outcome of transient global ischemia in Rhesus macaques.<br>Brain Research, 2009, 1286, 185-191.                                                                                                            | 1.1 | 4         |
| 492 | Transient Microneedle Insertion into Hippocampus Triggers Neurogenesis and Decreases Amyloid<br>Burden in a Mouse Model of Alzheimer's Disease. Cell Transplantation, 2016, 25, 1853-1861.                                                             | 1.2 | 4         |
| 493 | Recent progress in regenerative medicine for brain disorders. Brain Circulation, 2017, 3, 121.                                                                                                                                                         | 0.7 | 4         |
| 494 | Retrospective Case Series of Traumatic Brain Injury and Post-Traumatic Stress Disorder Treated with<br>Hyperbaric Oxygen Therapy. Cell Transplantation, 2019, 28, 885-892.                                                                             | 1.2 | 4         |
| 495 | Beyond contraception and hormone replacement therapy: Advancing Nestorone to a neuroprotective drug in the clinic. Brain Research, 2019, 1704, 161-163.                                                                                                | 1.1 | 4         |
| 496 | Empathy in stroke rats is modulated by social settings. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1182-1192.                                                                                                                            | 2.4 | 4         |
| 497 | Beneficial Effects of Transplanted Human Bone Marrow Endothelial Progenitors on Functional and<br>Cellular Components of Blood-Spinal Cord Barrier in ALS Mice. ENeuro, 2021, 8, ENEURO.0314-21.2021.                                                  | 0.9 | 4         |
| 498 | Stem cell-based regenerative medicine for neurological disorders: A special tribute to Dr. Teng Ma.<br>Brain Circulation, 2019, 5, 97.                                                                                                                 | 0.7 | 4         |
| 499 | Encapsulated stem cells ameliorate depressive-like behavior via growth factor secretion. Brain<br>Circulation, 2018, 4, 128.                                                                                                                           | 0.7 | 4         |
| 500 | Neural transplantation in the new millenium. Cell Transplantation, 2002, 11, 615-8.                                                                                                                                                                    | 1.2 | 4         |
| 501 | G-CSF-Mobilized human peripheral blood for transplantation therapy in stroke. Cell Transplantation, 2003, 12, 447-8.                                                                                                                                   | 1.2 | 4         |
| 502 | Cell transplantation: stem cells in the spotlight. Cell Transplantation, 2005, 14, 519-26.                                                                                                                                                             | 1.2 | 4         |
| 503 | Effects of fetal striatal transplants on motor asymmetry in ibotenic acid model of Huntington's<br>disease. Cognitive, Affective and Behavioral Neuroscience, 1998, 26, 49-52.                                                                         | 1.2 | 4         |
| 504 | Acute Treatment with Herbal Extracts Provides Neuroprotective Benefits in in Vitro and in vivo Stroke<br>Models, Characterized by Reduced Ischemic Cell Death and Maintenance of Motor and Neurological<br>Functions. Cell Medicine, 2010, 1, 137-142. | 5.0 | 3         |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 505 | The Proliferation and Differentiation of Stem Cell Journals. Stem Cell Reviews and Reports, 2010, 6, 497-499.                                                                                                                              | 5.6 | 3         |
| 506 | Different Sources of Stem Cells for Transplantation Therapy in Stroke. , 2013, , 29-46.                                                                                                                                                    |     | 3         |
| 507 | Translational lab-to-clinic hurdles in stem cell therapy. Chinese Neurosurgical Journal, 2016, 2, .                                                                                                                                        | 0.3 | 3         |
| 508 | Central and Peripheral Secondary Cell Death Processes after Transient Global Ischemia in Nonhuman<br>Primate Cerebellum and Heart. Methods in Molecular Biology, 2019, 1919, 215-225.                                                      | 0.4 | 3         |
| 509 | Stem Cells as Drug-like Biologics for Mitochondrial Repair in Stroke. Pharmaceutics, 2020, 12, 615.                                                                                                                                        | 2.0 | 3         |
| 510 | Granulocyte Colony-Stimulating Factor Enhances Brain Repair Following Traumatic Brain Injury<br>Without Requiring Activation of Cannabinoid Receptors. Cannabis and Cannabinoid Research, 2021, 6,<br>48-57.                               | 1.5 | 3         |
| 511 | Major histocompatibility complex Class II-based therapy for stroke. Brain Circulation, 2021, 7, 37.                                                                                                                                        | 0.7 | 3         |
| 512 | Advancing stem cells: New therapeutic strategies for treating central nervous system disorders.<br>Brain Circulation, 2018, 4, 81.                                                                                                         | 0.7 | 3         |
| 513 | The Choroid Plexus. , 2006, , 261-285.                                                                                                                                                                                                     |     | 3         |
| 514 | Fetal-Tissue Transplantation for Huntington's Disease: Preclinical Studies. , 0, , 77-94.                                                                                                                                                  |     | 3         |
| 515 | Delayed Umbilical Cord Blood Clamping: First Line of Defense Against Neonatal and Age-Related Disorders. Wulfenia, 2014, 21, 243-249.                                                                                                      | 0.0 | 3         |
| 516 | Reduction of acetylcholine in the hippocampus of hippocampal cholinergic neurostimulating peptide precursor protein knockout mice. Scientific Reports, 2021, 11, 22072.                                                                    | 1.6 | 3         |
| 517 | T155g-immortalized kidney cells produce growth factors and reduce sequelae of cerebral ischemia.<br>Cell Transplantation, 2002, 11, 251-9.                                                                                                 | 1.2 | 3         |
| 518 | Smoking cessation programmes are neglecting the needs of persons with neuropsychiatric disorders.<br>Australian and New Zealand Journal of Medicine, 1996, 26, 572-573.                                                                    | 0.5 | 2         |
| 519 | Presidential election and cell recount. NeuroReport, 2001, 12, A29.                                                                                                                                                                        | 0.6 | 2         |
| 520 | Article Commentary: Standardized Embryonic Tissue Collection and Hibernation Procedures, and<br>MRI-Based Graft Assessment: Advancing Neural Transplantation Therapy for Huntington's Disease. Cell<br>Transplantation, 2003, 12, 677-678. | 1.2 | 2         |
| 521 | Stroke, with or with no ice? Observations on amphetamine for the management of acute stroke.<br>Journal of Human Hypertension, 2007, 21, 594-597.                                                                                          | 1.0 | 2         |
| 522 | Announcing a New Open Access Journal Cell Medicine: Cell Transplantation Part B. Cell<br>Transplantation, 2010, 19, 1-2.                                                                                                                   | 1.2 | 2         |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 523 | Autologous stem cell transplant with gene therapy for Friedreich ataxia. Medical Hypotheses, 2014, 83, 296-298.                                                     | 0.8 | 2         |
| 524 | Gender‣inked Stem Cell Alterations in Stroke and Postpartum Depression. CNS Neuroscience and Therapeutics, 2015, 21, 348-356.                                       | 1.9 | 2         |
| 525 | Impact of mild traumatic brain injury on auditory brain stem dysfunction in mouse model. , 2016, 2016, 1854-1857.                                                   |     | 2         |
| 526 | Bone marrow-derived NCS-01 cells for ischemic stroke. Brain Circulation, 2021, 7, 44.                                                                               | 0.7 | 2         |
| 527 | Stem Cell Therapies in Neurology. Pancreatic Islet Biology, 2014, , 117-136.                                                                                        | 0.1 | 2         |
| 528 | Factor of familiarity in sibling recognition in golden hamsters. Journal of Ethology, 1995, 13, 17-22.                                                              | 0.4 | 1         |
| 529 | Comparative Study on 3-Nitropropionic Acid Neurotoxicity. , 2000, , 93-106.                                                                                         |     | 1         |
| 530 | Granulocyte colony-stimulating factor. Cmaj, 2006, 175, 1096-1096.                                                                                                  | 0.9 | 1         |
| 531 | Response to Deficiency of Bradykinin Receptor B2 Is not Detrimental in Experimental Stroke.<br>Hypertension, 2008, 51, .                                            | 1.3 | 1         |
| 532 | Choroid Plexus and Immune Response of the Brain. , 2010, , 75-91.                                                                                                   |     | 1         |
| 533 | Human Umbilical Cord Blood Cells for Stroke. , 2011, , 155-167.                                                                                                     |     | 1         |
| 534 | A Showcase of Bench-to-Bedside Regenerative Medicine at the 2010 ASNTR. Scientific World Journal,<br>The, 2011, 11, 1842-1864.                                      | 0.8 | 1         |
| 535 | A case with transient refractive change after removal of pituitary tumor. BMC Ophthalmology, 2013, 13, 65.                                                          | 0.6 | 1         |
| 536 | Translating amniotic fluid-derived stem cells for transplantation in stroke. Chinese Neurosurgical<br>Journal, 2016, 2, .                                           | 0.3 | 1         |
| 537 | An update on stem cell therapy for neurological disorders: cell death pathways as therapeutic targets. Chinese Neurosurgical Journal, 2017, 3, .                    | 0.3 | 1         |
| 538 | Addendum: Shinozuka, K. et al. Stem Cell Transplantation for Neuroprotection in Stroke. Brain Sci.<br>2013, 3, 239–261. Brain Sciences, 2017, 7, 145.               | 1.1 | 1         |
| 539 | Reprint of: Beyond contraception and hormone replacement therapy: Advancing Nestorone to a neuroprotective drug in the clinic. Brain Research, 2019, 1719, 285-287. | 1.1 | 1         |
| 540 | Editorial: Mechanistic underpinnings of stem cell therapy for neurological disorders. Brain Research, 2020, 1729, 146643.                                           | 1.1 | 1         |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 541 | A Museum of Stem Cells Points to Muse Cells as Robust Transplantable Cells for Stroke: Review.<br>Advances in Experimental Medicine and Biology, 2020, 1312, 165-177.                         | 0.8 | 1         |
| 542 | Regenerative medicine during the pandemic period. Brain Circulation, 2021, 7, 1.                                                                                                              | 0.7 | 1         |
| 543 | Sodium Azide-Induced Neurotoxicity. , 2000, , 233-242.                                                                                                                                        |     | 1         |
| 544 | Kallikrein Protects Against Ischemic Stroke by Inhibiting Apoptosis and Inflammation and Promoting<br>Angiogenesis and Neurogenesis. Human Gene Therapy, 2006, .                              | 1.4 | 1         |
| 545 | Fetal-Tissue Transplantation for Huntington's Disease: Preclinical Studies. , 1998, , 77-93.                                                                                                  |     | 1         |
| 546 | Animal Models of Cerebral Ischemia. , 1998, , 211-230.                                                                                                                                        |     | 1         |
| 547 | Translational research in early neuroscience careers of high school students. Neural Regeneration Research, 2017, 12, 586.                                                                    | 1.6 | 1         |
| 548 | Stem Cell-mediated Biobridge: Crossing the Great Divide Between Bench and Clinic in Translating Cell Therapy for Stroke. , 2018, , 285-307.                                                   |     | 1         |
| 549 | Emerging regenerative medicine for hemorrhagic stroke: An update on stem cell therapies. Brain<br>Hemorrhages, 2023, 4, 22-26.                                                                | 0.4 | 1         |
| 550 | Age-dependent neurobehavioral responses by young and mature adult rats to systemic kainic acid.<br>Restorative Neurology and Neuroscience, 1996, 10, 103-108.                                 | 0.4 | 0         |
| 551 | Stroke recovery with cellular therapies. Lancet Neurology, The, 2008, 7, 680-681.                                                                                                             | 4.9 | 0         |
| 552 | Announcing a New Open Access Journal: Cell Medicine, Part B of Cell Transplantation. Cell Medicine, 2010, 1, 1-2.                                                                             | 5.0 | 0         |
| 553 | Stroke Therapy Using Menstrual Blood Stem-Like Cells: Method. , 2012, , 191-197.                                                                                                              |     | 0         |
| 554 | Stem Cell Therapy for Ischemic Stroke. Springer Series in Translational Stroke Research, 2016, , 399-408.                                                                                     | 0.1 | 0         |
| 555 | Stem Cell Therapy for Neurovascular and Traumatic Brain Diseases. Molecular and Translational Medicine, 2017, , 53-72.                                                                        | 0.4 | Ο         |
| 556 | Recent Progress in Cell Therapy and Regenerative Medicine for Neurological Disorders: Introduction to the ASNTR Special Issue from the 2016 Meeting. Cell Transplantation, 2017, 26, 529-530. | 1.2 | 0         |
| 557 | Media coverage and public awareness on bioethics perception of emerging biomedical therapies.<br>Chinese Neurosurgical Journal, 2017, 3, .                                                    | 0.3 | 0         |
| 558 | Stem Cell-Paved Biobridge: A Merger of Exogenous and Endogenous Stem Cells Toward Regenerative Medicine in Stroke. Springer Series in Translational Stroke Research, 2018, , 153-180.         | 0.1 | 0         |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 559 | Stroke Therapy. , 2018, , 53-64.                                                                                                                                                    |     | Ο         |
| 560 | Message from the Editor-in-Chief. CNS and Neurological Disorders - Drug Targets, 2019, 18, 2-2.                                                                                     | 0.8 | 0         |
| 561 | Neural Transplantation and Huntington's Disease. , 2000, , 275-291.                                                                                                                 |     | 0         |
| 562 | Rodent Ischemia Models of Embolism and Ligation of the Middle Cerebral Artery. , 2000, , 393-406.                                                                                   |     | 0         |
| 563 | The Use of Sertoli Cells in Neural Transplantation. , 2006, , 241-259.                                                                                                              |     | 0         |
| 564 | NT2N Cell Transplantation and GDNF Treatment in Stroke: Linking Neurotrophic Factor Therapy and Neuroprotection. , 2007, , 353-371.                                                 |     | 0         |
| 565 | Concepts in Cell Therapy: From Cord Blood to Sertoli Cells. , 2007, , 547-566.                                                                                                      |     | 0         |
| 566 | 3-Nitropropionic Acid and Other Metabolic Toxin Lesions of the Striatum. Neuromethods, 2011, , 71-89.                                                                               | 0.2 | 0         |
| 567 | Preface - Stem Cells are Finally Starting to Jell. The Open Tissue Engineering and Regenerative Medicine Journal, 2011, 4, 1-2.                                                     | 2.6 | 0         |
| 568 | Asymmetrical Motor Behavior in Animal Models of Human Diseases. , 1996, , 301-321.                                                                                                  |     | 0         |
| 569 | Delta Opioid Receptor and Peptide: Hibernation for Stroke Therapy. , 2015, , 399-408.                                                                                               |     | 0         |
| 570 | From Neurogenic Niche to Site of Injury: Stem Cell-Mediated Biobridge for Brain Repair. Pancreatic<br>Islet Biology, 2015, , 161-172.                                               | 0.1 | 0         |
| 571 | Hippocampal Cholinergic Neurostimulating Peptide as a Possible Modulating Factor Against<br>Glutamatergic Neuronal Disability by Amyloid Oligomers. Cell Transplantation, 2017, , . | 1.2 | 0         |
| 572 | Human Neuroteratocarcinoma Cells as a Neural Progenitor Graft Source for Cell Transplantation in Stroke. , 2006, , 139-162.                                                         |     | 0         |
| 573 | Laboratory and clinical research on COVID-19: focus on non-lung organs. Conditioning Medicine, 2020, 3, 239-240.                                                                    | 1.3 | 0         |
| 574 | Navigating cellular repair for the central nervous system. Clinical Neurosurgery, 2008, 55, 133-7.                                                                                  | 0.2 | 0         |
| 575 | Unveiling the mechanisms of hematopoietic stem cell transplantation: Balancing cell senescence and proliferation in cancer and beyond. Med, 2022, 3, 223-225.                       | 2.2 | 0         |
| 576 | Preclinical Basis for Use of NT2N Cells in Neural Transplantation Therapy. , 0, , 411-430.                                                                                          |     | 0         |