

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3815728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N/Ce doped graphene supported Pt nanoparticles for the catalytic oxidation of formaldehyde at room temperature. Journal of Environmental Sciences, 2023, 125, 135-147.	6.1	6
2	Significant promotion of reducing treatment on Pd/TS-1 zeolite for formaldehyde catalytic purification at ambient temperature. Applied Catalysis B: Environmental, 2022, 304, 120843.	20.2	26
3	Facet control of manganese oxides with diverse redox abilities and acidities for catalytically removing hazardous 1,2-dichloroethane. Materials Advances, 2022, 3, 1101-1114.	5.4	1
4	ZSM-5 core–shell structured catalyst for enhancing low-temperature NH3-SCR efficiency and poisoning resistance. Applied Catalysis A: General, 2022, 630, 118438.	4.3	19
5	Solventâ€Free Thermal Synthesis of Extraâ€Largeâ€Pore Aluminophosphate Zeotype via Selfâ€Assembly of Doubleâ€Fourâ€Ring Unit. Chemistry - A European Journal, 2022, 28, .	3.3	3
6	Role of the exposure facets upon diverse morphologies of cobalt spinels on catalytic deN2O process. Catalysis Today, 2021, 376, 177-187.	4.4	8
7	Ce-promoted Mn/ZSM-5 catalysts for highly efficient decomposition of ozone. Journal of Environmental Sciences, 2021, 103, 219-228.	6.1	26
8	Highly Efficient NO Abatement over Cu-ZSM-5 with Special Nanosheet Features. Environmental Science & Technology, 2021, 55, 5422-5434.	10.0	42
9	Ionothermal synthesis, physicochemical characterization and catalytic performance of extra-large-pore silicoaluminophosphate zeotype with -CLO structure. Journal of Porous Materials, 2021, 28, 1585-1594.	2.6	4
10	Morphology effect of diverse ceria with active tungsten species on NH3-SCR behaviors. Catalysis Today, 2020, 339, 241-253.	4.4	25
11	Effective catalytic abatement of indoor formaldehyde at room temperature over TS-1 supported platinum with relatively low content. Catalysis Today, 2020, 355, 547-554.	4.4	20
12	Facile Synthesis of Hierarchical Nanosized Singleâ€Crystal Aluminophosphate Molecular Sieves from Highly Homogeneous and Concentrated Precursors. Angewandte Chemie, 2020, 132, 3483-3487.	2.0	2
13	Facile Synthesis of Hierarchical Nanosized Singleâ€Crystal Aluminophosphate Molecular Sieves from Highly Homogeneous and Concentrated Precursors. Angewandte Chemie - International Edition, 2020, 59, 3455-3459.	13.8	36
14	Synergies of Mn oxidative ability and ZSM-5 acidity for 1, 2-dichloroethane catalytic elimination. Applied Catalysis B: Environmental, 2020, 276, 118922.	20.2	60
15	Strategy on Effective Synthesis of SSZ-13 Zeolite Aiming at Outstanding Performances for NH3-SCR Process. Catalysis Surveys From Asia, 2020, 24, 143-155.	2.6	13
16	Encapsulating uniform Pd nanoparticles in TS-1 zeolite as efficient catalyst for catalytic abatement of indoor formaldehyde at room temperature. Applied Catalysis B: Environmental, 2020, 278, 119311.	20.2	48
17	Pt Nanoparticles Supported on N/Ce-Doped Activated Carbon for the Catalytic Oxidation of Formaldehyde at Room Temperature. ACS Applied Nano Materials, 2020, 3, 2614-2624.	5.0	45
18	Innenrücktitelbild: Facile Synthesis of Hierarchical Nanosized Single rystal Aluminophosphate Molecular Sieves from Highly Homogeneous and Concentrated Precursors (Angew. Chem. 9/2020). Angewandte Chemie, 2020, 132, 3775-3775.	2.0	0

Ying Wei

#	Article	IF	CITATIONS
19	Core-shell structure effect on CeO2 and TiO2 supported WO3 for the NH3-SCR process. Molecular Catalysis, 2020, 485, 110822.	2.0	17
20	Facile ionothermal synthesis of SAPO-LTA zeotypes with high structural stability and their catalytic performance in MTO reaction. Microporous and Mesoporous Materials, 2019, 288, 109611.	4.4	20
21	Highly active OMS-2 for catalytic ozone decomposition under humid conditions. Petroleum Science, 2019, 16, 912-919.	4.9	21
22	Synergistic effect of niobium and ceria on anatase for low-temperature NH3-SCR of NO process. Molecular Catalysis, 2019, 478, 110563.	2.0	11
23	Efficiency of Phosphotungstic Acid Modified Mn-Based Catalysts to Promote Activity and N2 Formation for Selective Catalytic Reduction of NO with Ammonia. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	1
24	Ionothermal Synthesis of Germanosilicate Zeolites Constructed with Doubleâ€Fourâ€Ring Structureâ€Building Units in the Presence of Organic Base. Chemistry - an Asian Journal, 2019, 14, 621-626.	3.3	10
25	Morphology-Oriented ZrO ₂ -Supported Vanadium Oxide for the NH ₃ -SCR Process: Importance of Structural and Textural Properties. ACS Applied Materials & Interfaces, 2019, 11, 22240-22254.	8.0	35
26	Co‧tructureâ€Directing Effect in Ionothermal Synthesis of Extra‣argeâ€Pore Aluminophosphate Zeotype with â^'CLO Topology. Chemistry - A European Journal, 2018, 24, 2410-2417.	3.3	14
27	Tetraalkylammonium hydroxide-assisted ionothermal synthesis and characterization of LTA-type aluminophosphate zeotypes with high structural stability after detemplation and hydration. New Journal of Chemistry, 2018, 42, 15453-15459.	2.8	6
28	Isomorphous substitution induced ionothermal synthesis of magnesium aluminophosphate zeolites in fluoride-free media. RSC Advances, 2016, 6, 61915-61919.	3.6	1
29	Tailoring and visualizing the pore architecture of hierarchical zeolites. Chemical Society Reviews, 2015, 44, 7234-7261.	38.1	336
30	Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation. Applied Catalysis A: General, 2015, 504, 211-219.	4.3	45
31	Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Current Opinion in Colloid and Interface Science, 2015, 20, 311-321.	7.4	101
32	Mn ²⁺ cation-directed ionothermal synthesis of an open-framework fluorinated aluminium phosphite–phosphate. RSC Advances, 2014, 4, 29310.	3.6	4
33	Co-templating ionothermal synthesis and structure characterization of two new 2D layered aluminophosphates. Dalton Transactions, 2012, 41, 12408.	3.3	24
34	Ionothermal synthesis of AlPO4 molecular sieves in the presence of quaternary ammonium cation. Materials Letters, 2010, 64, 2118-2121.	2.6	23
35	Ionothermal synthesis of AIPO4-34 molecular sieves using heterocyclic aromatic amine as the structure directing agent. Materials Letters, 2010, 64, 2384-2387.	2.6	23
36	Ionothermal Synthesis of an Aluminophosphate Molecular Sieve with 20â€Ring Pore Openings. Angewandte Chemie - International Edition, 2010, 49, 5367-5370.	13.8	107

Ying Wei

#	Article	IF	CITATIONS
37	Inside Cover: Ionothermal Synthesis of an Aluminophosphate Molecular Sieve with 20-Ring Pore Openings (Angew. Chem. Int. Ed. 31/2010). Angewandte Chemie - International Edition, 2010, 49, 5200-5200.	13.8	2
38	Ionothermal synthesis and crystal structure of a new layered nickel(II) diphosphate, DRM-1. Inorganic Chemistry Communication, 2010, 13, 1357-1360.	3.9	7
39	Mixed template effect adjusted by amine concentration in ionothermal synthesis of molecular sieves. Dalton Transactions, 2010, 39, 1441-1443.	3.3	31
40	The Cooperative Templating Effect of Organic Amine in the Ionothermal Syn-thesis of LTA Type Aluminophosphate Molecular Sieves. Chinese Journal of Catalysis, 2010, 31, 1083-1089.	14.0	4
41	Ionothermal synthesis of gallophosphate molecular sieves in 1-alkyl-3-methyl imidazolium bromide ionic liquids. Microporous and Mesoporous Materials, 2009, 120, 278-284.	4.4	33
42	Effect of Water on the Ionothermal Synthesis of Molecular Sieves. Journal of the American Chemical Society, 2008, 130, 8120-8121.	13.7	111
43	Ionothermal synthesis of aluminophosphate molecular sieves. Studies in Surface Science and Catalysis, 2007, 170, 228-232.	1.5	4
44	Structure-Directing Role of Amines in the Ionothermal Synthesis. Journal of the American Chemical Society, 2006, 128, 7432-7433.	13.7	124