Michela Raimondi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3815584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer Stem Cells—Key Players in Tumor Relapse. Cancers, 2021, 13, 376.	3.7	74
2	Ca2+ overload- and ROS-associated mitochondrial dysfunction contributes to δ-tocotrienol-mediated paraptosis in melanoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 277-292.	4.9	39
3	δâ€Tocotrienol sensitizes and reâ€sensitizes ovarian cancer cells to cisplatin via induction of G1 phase cell cycle arrest and ROS/MAPKâ€mediated apoptosis. Cell Proliferation, 2021, 54, e13111.	5.3	24
4	The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188338.	7.4	79
5	Mitochondrial functional and structural impairment is involved in the antitumor activity of δ-tocotrienol in prostate cancer cells. Free Radical Biology and Medicine, 2020, 160, 376-390.	2.9	17
6	Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery. International Journal of Molecular Sciences, 2020, 21, 6806.	4.1	34
7	Gonadotropin-Releasing Hormone Receptors in Prostate Cancer: Molecular Aspects and Biological Functions. International Journal of Molecular Sciences, 2020, 21, 9511.	4.1	23
8	Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells, 2020, 9, 460.	4.1	60
9	Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. Journal of Cellular Physiology, 2019, 234, 1147-1164.	4.1	45
10	Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Seminars in Cancer Biology, 2019, 59, 221-235.	9.6	39
11	Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Seminars in Cancer Biology, 2019, 59, 266-282.	9.6	23
12	Role of Endoplasmic Reticulum Stress in the Anticancer Activity of Natural Compounds. International Journal of Molecular Sciences, 2019, 20, 961.	4.1	93
13	Tocotrienols and Cancer: From the State of the Art to Promising Novel Patents. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 5-18.	1.6	19
14	δâ€Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Proliferation, 2019, 52, e12576.	5.3	69
15	Epithelial-To-Mesenchymal Transition Markers and CD44 Isoforms Are Differently Expressed in 2D and 3D Cell Cultures of Prostate Cancer Cells. Cells, 2019, 8, 143.	4.1	46