Grahame Faulkner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3815466/publications.pdf Version: 2024-02-01

CDAHAME FALLENED

#	Article	IF	CITATIONS
1	A Digital Pre-Equalizer For Optical Wireless Links. Journal of Lightwave Technology, 2022, 40, 961-967.	2.7	6
2	Giga-Bit Transmission Between an Eye-Safe Transmitter and Wide Field-of-View SiPM Receiver. IEEE Access, 2021, 9, 154225-154236.	2.6	7
3	Experimental Characterization of Turbo-Coded 20 Gbps Fiber-Wireless-Fiber Optical Links. IEEE Access, 2021, 9, 112726-112732.	2.6	0
4	Inter-Symbol Interference and Silicon Photomultiplier VLC Receivers in Ambient Light. IEEE Photonics Technology Letters, 2021, 33, 449-452.	1.3	14
5	Raised Cosine Pulse Shaping for Pre-equalized Optical Wireless Links. IEEE Photonics Technology Letters, 2021, 33, 912-915.	1.3	4
6	Optical Antennas for Wavelength Division Multiplexing in Visible Light Communications beyond the Étendue Limit. Advanced Optical Materials, 2020, 8, 1901139.	3.6	29
7	Design and Characterisation of Terabit/s Capable Compact Localisation and Beam-Steering Terminals for Fiber-Wireless-Fiber Links. Journal of Lightwave Technology, 2020, 38, 6817-6826.	2.7	23
8	Fiber-Wireless-Fiber Terminals for Optical Wireless Communication over Multiple Bands. , 2020, , .		4
9	A SiPM-Based VLC Receiver for Gigabit Communication Using OOK Modulation. IEEE Photonics Technology Letters, 2020, 32, 317-320.	1.3	32
10	The relationships between the amplitude of receiver output voltage and the maximum achievable OOK data rate. , 2020, , .		3
11	Beyond Terabit/s WDM Optical Wireless Transmission using Wavelength-transparent Beam Tracking and Steering. , 2020, , .		9
12	A Shot-Noise Limited 420 Mbps Visible Light Communication System using Commerical Off-the-Shelf Silicon Photomultiplier (SiPM). , 2019, , .		10
13	A Wide-Area Coverage 35 Gb/s Visible Light Communications Link for Indoor Wireless Applications. Scientific Reports, 2019, 9, 4952.	1.6	68
14	Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System. IEEE Photonics Technology Letters, 2019, 31, 821-824.	1.3	28
15	Polarization Calibration Scheme for a Practical Handheld Free Space Quantum Key Distribution Link. , 2019, , .		1
16	A Fluorescent Antenna for White Light Visible Light Communications. , 2019, , .		7
17	An Optical Transceiver Powered by On-Chip Solar Cells for IoT Smart Dusts With Optical Wireless Communications. IEEE Internet of Things Journal, 2019, 6, 3248-3256.	5.5	11
18	A Comparison of APD- and SPAD-Based Receivers for Visible Light Communications. Journal of Lightwave Technology, 2018, 36, 2435-2442.	2.7	68

GRAHAME FAULKNER

#	Article	IF	CITATIONS
19	Flexible Glass Hybridized Colloidal Quantum Dots for Gb/s Visible Light Communications. IEEE Photonics Journal, 2018, 10, 1-11.	1.0	12
20	Efficient pulse amplitude modulation for SPAD-based receivers. , 2018, , .		2
21	A Tunable Passband Logarithmic Photodetector for IoT Smart Dusts. IEEE Sensors Journal, 2018, 18, 5321-5328.	2.4	11
22	A spectrally efficient equalization technique for optical sources with direct modulation. Optics Letters, 2018, 43, 2708.	1.7	8
23	MIMO Visible Light Communications Using a Wide Field-of-View Fluorescent Concentrator. IEEE Photonics Technology Letters, 2017, 29, 306-309.	1.3	21
24	A Multigigabit per Second Integrated Multiple-Input Multiple-Output VLC Demonstrator. Journal of Lightwave Technology, 2017, 35, 4358-4365.	2.7	40
25	A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semiconductor Science and Technology, 2017, 32, 023001.	1.0	205
26	Design, Fabrication, and Application of GaN-Based Micro-LED Arrays With Individual Addressing by N-Electrodes. IEEE Photonics Journal, 2017, 9, 1-11.	1.0	22
27	High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications. IEEE Photonics Technology Letters, 2016, 28, 2023-2026.	1.3	276
28	A 50 Gb/s Transparent Indoor Optical Wireless Communications Link With an Integrated Localization and Tracking System. Journal of Lightwave Technology, 2016, 34, 2510-2517.	2.7	63
29	LED Based Wavelength Division Multiplexed 10 Gb/s Visible Light Communications. Journal of Lightwave Technology, 2016, 34, 3047-3052.	2.7	187
30	Design and Demonstration of a 400 Gb/s Indoor Optical Wireless Communications Link. Journal of Lightwave Technology, 2016, 34, 5332-5339.	2.7	51
31	Wide field-of-view fluorescent antenna for visible light communications beyond the étendue limit. Optica, 2016, 3, 702.	4.8	73
32	High-Speed Integrated Visible Light Communication System: Device Constraints and Design Considerations. IEEE Journal on Selected Areas in Communications, 2015, 33, 1750-1757.	9.7	106
33	Challenges in Wide Coverage Indoor Optical Communications Using Fibre-Wireless-Fibre Links for Terabit Data Rates. , 2015, , .		4
34	A 200 Mb/s VLC demonstration with a SPAD based receiver. , 2015, , .		28
35	Beyond 100-Gb/s Indoor Wide Field-of-View Optical Wireless Communications. IEEE Photonics Technology Letters, 2015, 27, 367-370.	1.3	109
36	Novel Fast Color-Converter for Visible Light Communication Using a Blend of Conjugated Polymers. ACS Photonics, 2015, 2, 194-199.	3.2	57

GRAHAME FAULKNER

#	Article	IF	CITATIONS
37	Visible light communication using laser diode based remote phosphor technique. , 2015, , .		30
38	Demonstration of 2.3 Gb/s RGB white-light VLC using polymer based colour-converters and GaN micro-LEDs. , 2015, , .		17
39	Experimental proof-of-concept of optical spatial modulation OFDM using micro LEDs. , 2015, , .		13
40	Fluorescent Redâ€Emitting BODIPY Oligofluorene Starâ€Shaped Molecules as a Color Converter Material for Visible Light Communications. Advanced Optical Materials, 2015, 3, 536-540.	3.6	44
41	Optically Powered Energy Source in a Standard CMOS Process for Integration in Smart Dust Applications. IEEE Journal of the Electron Devices Society, 2014, 2, 158-163.	1.2	9
42	A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride \$mu{m LED}\$. IEEE Photonics Technology Letters, 2014, 26, 637-640.	1.3	722
43	Effectiveness of blue-filtering in WLED based indoor Visible light communication. , 2014, , .		14
44	Visible Light Communication Using a Blue GaN \$mu \$ LED and Fluorescent Polymer Color Converter. IEEE Photonics Technology Letters, 2014, 26, 2035-2038.	1.3	109
45	High-Speed Optical Wireless Demonstrators: Conclusions and Future Directions. Journal of Lightwave Technology, 2012, 30, 2181-2187.	2.7	124
46	Indoor Optical Wireless MIMO System With an Imaging Receiver. IEEE Photonics Technology Letters, 2011, 23, 97-99.	1.3	177
47	A gigabit/s indoor optical wireless system for Home Access Networks. , 2010, , .		3
48	High data-rate infra-red optical wireless communications: Implementation challenges. , 2010, , .		7
49	Indoor Gigabit optical wireless communications: Challenges and possibilities. , 2010, , .		39
50	Gigabit optical wireless for a Home Access Network. , 2009, , .		11
51	100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED. IEEE Photonics Technology Letters, 2009, 21, 1063-1065.	1.3	521
52	Equalisation for high-speed Visible Light Communications using white-LEDs. , 2008, , .		12
53	High-Speed Visible Light Communications Using Multiple-Resonant Equalization. IEEE Photonics Technology Letters, 2008, 20, 1243-1245.	1.3	305
54	80 Mbit/s Visible Light Communications using pre-equalized white LED. , 2008, , .		61

#	Article	IF	CITATIONS
55	Coupling mechanisms for split ring resonators: Theory and experiment. Physica Status Solidi (B): Basic Research, 2007, 244, 1170-1175.	0.7	97