
Brian P Davidson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3815417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Augmentation of Muscle Blood Flow by Ultrasound Cavitation Is Mediated by ATP and Purinergic Signaling. Circulation, 2017, 135, 1240-1252.	1.6	82
2	Molecular Imaging of Inflammation and Platelet Adhesion in Advanced Atherosclerosis Effects of Antioxidant Therapy With NADPH Oxidase Inhibition. Circulation: Cardiovascular Imaging, 2013, 6, 74-82.	1.3	77
3	Ultrasound-Mediated Vascular Gene Transfection by Cavitation of Endothelial-Targeted Cationic Microbubbles. JACC: Cardiovascular Imaging, 2012, 5, 1253-1262.	2.3	64
4	Molecular Imaging of the Paracrine Proangiogenic Effects of Progenitor Cell Therapy in Limb Ischemia. Circulation, 2013, 127, 710-719.	1.6	60
5	Detection of Antecedent Myocardial Ischemia With Multiselectin Molecular Imaging. Journal of the American College of Cardiology, 2012, 60, 1690-1697.	1.2	56
6	Molecular Imaging of Platelet–Endothelial Interactions and Endothelial von Willebrand Factor in Early and Mid-Stage Atherosclerosis. Circulation: Cardiovascular Imaging, 2015, 8, e002765.	1.3	53
7	Ischemic Memory Imaging in Nonhuman Primates with Echocardiographic Molecular Imaging of Selectin Expression. Journal of the American Society of Echocardiography, 2014, 27, 786-793.e2.	1.2	31
8	Ultrasound Molecular Imaging of Atherosclerosis Using Small-Peptide Targeting Ligands Against Endothelial Markers of Inflammation and Oxidative Stress. Ultrasound in Medicine and Biology, 2018, 44, 1155-1163.	0.7	31
9	Epoxyeicosatrienoic acids mediate insulin-mediated augmentation in skeletal muscle perfusion and blood volume. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1097-E1104.	1.8	25
10	Augmentation of Tissue Perfusion in Patients With Peripheral Artery Disease Using Microbubble Cavitation. JACC: Cardiovascular Imaging, 2020, 13, 641-651.	2.3	25
11	Contrast-Enhanced Ultrasound Assessment of Impaired Adipose Tissue and Muscle Perfusion in Insulin-Resistant Mice. Circulation: Cardiovascular Imaging, 2015, 8, .	1.3	24
12	Temporal Characterization of the Functional Density of the Vasa Vasorum by Contrast-Enhanced Ultrasonography Maximum Intensity Projection Imaging. JACC: Cardiovascular Imaging, 2010, 3, 1265-1272.	2.3	23
13	Echocardiographic Ischemic Memory Imaging Through Complement-Mediated Vascular AdhesionÂof Phosphatidylserine-Containing Microbubbles. JACC: Cardiovascular Imaging, 2016, 9, 937-946.	2.3	23
14	Coronary Microvascular Dysfunction by Myocardial Contrast Echocardiography in Nonelderly Patients Referred for Computed Tomographic Coronary Angiography. Journal of the American Society of Echocardiography, 2019, 32, 817-825.	1.2	23
15	Lipoprotein Apheresis Acutely ReversesÂCoronary Microvascular Dysfunction in Patients With SevereÂHypercholesterolemia. JACC: Cardiovascular Imaging, 2019, 12, 1430-1440.	2.3	22
16	Real-Time Contrast Ultrasound Muscle Perfusion Imaging with Intermediate-Power Imaging Coupled with Acoustically Durable Microbubbles. Journal of the American Society of Echocardiography, 2015, 28, 718-726.e2.	1.2	20
17	Flow Augmentation in the Myocardium by Ultrasound Cavitation of Microbubbles: Role of Shear-Mediated Purinergic Signaling. Journal of the American Society of Echocardiography, 2020, 33, 1023-1031.e2.	1.2	19
18	Quantification of residual limb skeletal muscle perfusion with contrast-enhanced ultrasound during application of a focal junctional tourniquet. Journal of Vascular Surgery, 2016, 63, 148-153.	0.6	17

BRIAN P DAVIDSON

#	Article	IF	CITATIONS
19	Renal Retention of Lipid Microbubbles: A Potential Mechanism for Flank Discomfort During Ultrasound Contrast Administration. Journal of the American Society of Echocardiography, 2013, 26, 1474-1481.	1.2	16
20	Contrast Enhanced Ultrasound Perfusion Imaging in Skeletal Muscle. Journal of Cardiovascular Imaging, 2019, 27, 163.	0.2	15
21	Exercise versus vasodilator stress limb perfusion imaging for the assessment of peripheral artery disease. Echocardiography, 2017, 34, 1187-1194.	0.3	14
22	Future applications of contrast echocardiography. Heart, 2012, 98, 246-253.	1.2	13
23	Left Ventricular Function and the Systemic Arterial Vasculature: Remembering What We Have Learned. Journal of the American Society of Echocardiography, 2012, 25, 891-894.	1.2	9
24	Echocardiographic Evaluation of the Effects of Stem Cell Therapy on Perfusion and Function in Ischemic Cardiomyopathy. Journal of the American Society of Echocardiography, 2014, 27, 192-199.	1.2	9
25	Assessment of Novel Antioxidant Therapy in Atherosclerosis by Contrast Ultrasound Molecular Imaging. Journal of the American Society of Echocardiography, 2018, 31, 1252-1259.e1.	1.2	9
26	Limb Perfusion During Exercise Assessed by Contrast Ultrasound Varies According to Symptom Severity in Patients with Peripheral Artery Disease. Journal of the American Society of Echocardiography, 2019, 32, 1086-1094.e3.	1.2	9
27	Functional adaptations of the coronary microcirculation to anaemia in fetal sheep. Journal of Physiology, 2016, 594, 6165-6174.	1.3	7
28	Echocardiographic Ischemic Memory Molecular Imaging for Point-of-Care Detection of Myocardial Ischemia. Journal of the American College of Cardiology, 2021, 78, 1990-2000.	1.2	7
29	Rest-Stress Limb Perfusion Imaging in Humans with Contrast Ultrasound Using Intermediate-Power Imaging and Microbubbles Resistant to Inertial Cavitation. Journal of the American Society of Echocardiography, 2017, 30, 503-510.e1.	1.2	5
30	Plasma Lipidomic Patterns in Patients with Symptomatic Coronary Microvascular Dysfunction. Metabolites, 2021, 11, 648.	1.3	5
31	Making the Case for Ischemia: Using Myocardial Contrast Echocardiography to Understand When the (Circumstantial) Evidence Doesn't Add Up. Journal of the American Society of Echocardiography, 2019, 32, 1102-1104.	1.2	1
32	Contrast-Enhanced Ultrasound Perfusion Imaging in Peripheral Arterial Disease. , 2020, , 147-164.		0
33	Contrast Ultrasound Assessment of Skeletal Muscle Recruitable Perfusion after Permanent Left Ventricular Assist Device Implantation: Implications for Functional Recovery. Journal of the American Society of Echocardiography, 2021, , .	1.2	О