Renato Mendes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3815304/publications.pdf Version: 2024-02-01

RENATO MENDES

#	Article	IF	CITATIONS
1	Fundão Dam collapse: Oceanic dispersion of River Doce after the greatest Brazilian environmental accident. Marine Pollution Bulletin, 2016, 112, 359-364.	2.3	118
2	Toward adaptive robotic sampling of phytoplankton in the coastal ocean. Science Robotics, 2019, 4, .	9.9	56
3	Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability. Progress in Oceanography, 2016, 146, 212-222.	1.5	53
4	Analysis of the influence of river discharge and wind on the Ebro turbid plume using MODIS-Aqua and MODIS-Terra data. Journal of Marine Systems, 2015, 142, 40-46.	0.9	41
5	Informationâ€driven robotic sampling in the coastal ocean. Journal of Field Robotics, 2018, 35, 1101-1121.	3.2	37
6	Observation of a turbid plume using MODIS imagery: The case of Douro estuary (Portugal). Remote Sensing of Environment, 2014, 154, 127-138.	4.6	34
7	New insights into the Western Iberian Buoyant Plume: Interaction between the Douro and Minho River plumes under winter conditions. Progress in Oceanography, 2016, 141, 30-43.	1.5	32
8	Assessing salt marsh extent and condition changes with 35Âyears of Landsat imagery: Tagus Estuary case study. Remote Sensing of Environment, 2020, 247, 111939.	4.6	28
9	Characterization of Iberian turbid plumes by means of synoptic patterns obtained through MODIS imagery. Journal of Sea Research, 2017, 126, 12-25.	0.6	24
10	Seasonal and interannual variability of the Douro turbid river plume, northwestern Iberian Peninsula. Remote Sensing of Environment, 2017, 194, 401-411.	4.6	23
11	Evaluation of long-term estuarine vegetation changes through Landsat imagery. Science of the Total Environment, 2019, 653, 512-522.	3.9	22
12	Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery. PLoS ONE, 2017, 12, e0187036.	1.1	16
13	Storm surge impact in the hydrodynamics of a tidal lagoon: the case of Ria de Aveiro. Journal of Coastal Research, 2013, 65, 796-801.	0.1	14
14	Unusual Circulation Patterns of the Rias Baixas Induced by Minho Freshwater Intrusion (NW of the) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
15	Integrated High-resolution Numerical Model for the NW Iberian Peninsula Coast and Main Estuarine Systems. Journal of Coastal Research, 2018, 85, 66-70.	0.1	10
16	Assessing salt marsh loss and degradation by combining longâ€ŧerm LANDSAT imagery and numerical modelling. Land Degradation and Development, 2021, 32, 4534-4545.	1.8	10
17	Potential impacts of the mean sea level rise on the hydrodynamics of the Douro river estuary. Journal of Coastal Research, 2013, 165, 1951-1956.	0.1	8

18 Field Report: Exploring Fronts with Multiple Robots. , 2018, , .

RENATO MENDES

#	Article	IF	CITATIONS
19	Multiple Autonomous Vehicles Applied to Plume Detection and Tracking. , 2018, , .		6
20	A new front-tracking algorithm for marine robots. , 2018, , .		6
21	To Boldly Dive Where No One Has Gone Before: Experiments in Coordinated Robotic Ocean Exploration. Springer Proceedings in Advanced Robotics, 2021, , 472-487.	0.9	5
22	Coupled modelling of the interaction between dissolved substances emitted by Minho and Lima estuarine outflows (Portugal). Journal of Marine Systems, 2021, 222, 103601.	0.9	5
23	Characterization of Highly Dynamic Coastal Environments, Employing Teams of Heterogeneous Vehicles: A Holistic Case Study. , 2018, , .		4
24	The Value Function as a Decision Support Tool in Unmanned Vehicle Operations. IFAC-PapersOnLine, 2020, 53, 14608-14613.	0.5	4
25	Trajectory Optimization for Underwater Vehicles in Time-Varying Ocean Flows. , 2018, , .		3
26	Marine robotics exploration of a large-scale open-ocean front. , 2018, , .		3
27	Optimizing autonomous underwater vehicle routes with the aid of high resolution ocean models. , 2019, , .		3
28	Using LAUVs in highly dynamic environments: influence of the tidal estuarine outflow in the thermocline structure. , 2018, , .		2
29	Using AUVs to study estuarine outflow stratification under severe environmental constraints. , 2018, , .		1
30	Coordinated Robotic Exploration of Dynamic Open Ocean Phenomena. , 2022, 2, 843-871.		1
31	Development and deployment of an estuarine microbuoy. , 2018, , .		0
32	Numerical Characterization of the Douro River Plume. Lecture Notes in Computer Science, 2019, , 279-286.	1.0	0
33	3D Tracking of a River Plume Front with an AUV. , 2021, , .		0
34	Optimal AUV trajectory planning and execution control for maritime pollution incident response. , 2021, , .		0