
Onur G Apul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3815220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elucidating CO2 nanobubble interfacial reactivity and impacts on water chemistry. Journal of Colloid and Interface Science, 2022, 607, 720-728.	5.0	25
2	Comparing the morphologies and adsorption behavior of electrospun polystyrene composite fibers with OD fullerenes, 1D multiwalled carbon nanotubes and 2D graphene oxides. Chemical Engineering Journal Advances, 2022, 9, 100199.	2.4	10
3	Symbiotic Engineering: A Novel Approach for Environmental Remediation. ACS ES&T Engineering, 2022, 2, 606-616.	3.7	1
4	Chain Extensions in PhotoATRP-Induced Self-Assembly (PhotoATR-PISA): A Route to Ultrahigh Solids Concentrations and Click Nanoparticle Networks as Adsorbents for Water Treatment. Macromolecules, 2022, 55, 3699-3710.	2.2	2
5	Effect of air nanobubbles on oxygen transfer, oxygen uptake, and diversity of aerobic microbial consortium in activated sludge reactors. Bioresource Technology, 2022, 351, 127090.	4.8	26
6	Aging of microplastics increases their adsorption affinity towards organic contaminants. Chemosphere, 2022, 298, 134238.	4.2	112
7	Biodegradation of petroleum hydrocarbons in a weathered, unsaturated soil is inhibited by peroxide oxidants. Journal of Hazardous Materials, 2022, 433, 128770.	6.5	15
8	Adsorption of organic pollutants by microplastics: Overview of a dissonant literature. Journal of Hazardous Materials Advances, 2022, 6, 100091.	1.2	18
9	Electrostatic forces and higher order curvature terms of Young–Laplace equation on nanobubble stability in water. Npj Clean Water, 2022, 5, .	3.1	10
10	Towards Selective Removal of Bromide from Drinking Water Resources using Electrochemical Desalination. Chemical Engineering Journal Advances, 2022, 12, 100369.	2.4	6
11	Divided Perception of Drinking Water Safety: Another Manifestation of America's Racial Gap. ACS ES&T Water, 2021, 1, 6-7.	2.3	7
12	Response to the Comment "Closing America's Racial Gap around Drinking Water Quality Perceptions and the Role of the Environmental Engineering and Science Academic Community― ACS ES&T Water, 2021, 1, 461-461.	2.3	0
13	Effects of carbonaceous susceptors on microwave pretreatment of waste activated sludge and subsequent anaerobic digestion. Bioresource Technology Reports, 2021, 13, 100641.	1.5	2
14	Nanoâ€scale applications in aquaculture: Opportunities for improved production and disease control. Journal of Fish Diseases, 2021, 44, 359-370.	0.9	7
15	Thermal Regeneration of Spent Granular Activated Carbon Presents an Opportunity to Break the Forever PFAS Cycle. Environmental Science & Technology, 2021, 55, 5608-5619.	4.6	68
16	Effect of superfine pulverization of powdered activated carbon on adsorption of carbamazepine in natural source waters. Science of the Total Environment, 2021, 793, 148473.	3.9	12
17	Repeatable use assessment of silicon carbide as permanent susceptor bed in ex situ microwave remediation of petroleum-impacted soils. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100116.	2.9	3
18	Critical review for microwave pretreatment of waste-activated sludge prior to anaerobic digestion. Current Opinion in Environmental Science and Health, 2020, 14, 1-9.	2.1	38

ONUR G APUL

#	Article	IF	CITATIONS
19	Linear solvation energy relationship development for adsorption of synthetic organic compounds by carbon nanomaterials: an overview of the last decade. Environmental Science: Water Research and Technology, 2020, 6, 2949-2957.	1.2	4
20	Photocatalytic activity of micron-scale brass on emerging pollutant degradation in water: mechanism elucidation and removal efficacy assessment. RSC Advances, 2020, 10, 39931-39942.	1.7	6
21	Microplastic particle versus fiber generation during photo-transformation in simulated seawater. Science of the Total Environment, 2020, 736, 139690.	3.9	64
22	Transformation potential of cannabinoids during their passage through engineered water treatment systems: A perspective. Environment International, 2020, 137, 105586.	4.8	7
23	Mesoporous activated carbon shows superior adsorption affinity for 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in water. Npj Clean Water, 2020, 3, .	3.1	5
24	Adsorption kinetics of synthetic organic contaminants onto superfine powdered activated carbon. Chemosphere, 2020, 253, 126628.	4.2	27
25	Optimization of biomethane production from anaerobic Co-digestion of microalgae and septic tank sludge. Biomass and Bioenergy, 2019, 127, 105266.	2.9	27
26	Removal of poly- and per-fluoroalkyl substances from aqueous systems by nano-enabled water treatment strategies. Environmental Science: Water Research and Technology, 2019, 5, 198-208.	1.2	57
27	Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter. Chemosphere, 2019, 229, 515-524.	4.2	33
28	Nanobubble Technologies Offer Opportunities To Improve Water Treatment. Accounts of Chemical Research, 2019, 52, 1196-1205.	7.6	164
29	The Genesis of a Critical Environmental Concern: Cannabinoids in Our Water Systems. Environmental Science & Technology, 2019, 53, 1746-1747.	4.6	7
30	Predictive models for adsorption of organic compounds by Graphene nanosheets: comparison with carbon nanotubes. Science of the Total Environment, 2019, 654, 28-34.	3.9	19
31	Removal of Bromide from Surface Water: Comparison Between Silver-Impregnated Graphene Oxide and Silver-Impregnated Powdered Activated Carbon. Environmental Engineering Science, 2018, 35, 988-995.	0.8	22
32	Bromide and Other Halide Ion Removal From Drinking Waters Using Silverâ€Amended Coagulation. Journal - American Water Works Association, 2018, 110, 13-24.	0.2	4
33	Removal of bromide from surface waters using silver impregnated activated carbon. Water Research, 2017, 113, 223-230.	5.3	36
34	Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes. Environmental Science & Technology, 2017, 51, 7101-7110.	4.6	92
35	The effect of metal (hydr)oxide nano-enabling on intraparticle mass transport of organic contaminants in hybrid granular activated carbon. Science of the Total Environment, 2017, 586, 1219-1227.	3.9	10
36	Superfine powdered activated carbon incorporated into electrospun polystyrene fibers preserve adsorption capacity. Science of the Total Environment, 2017, 592, 458-464.	3.9	22

ONUR G APUL

#	Article	IF	CITATIONS
37	Adsorption of organic contaminants by graphene nanosheets: A review. Water Research, 2017, 126, 385-398.	5.3	354
38	Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to <i>Pimphales promelas</i> : Influence of Adsorbate Molecular Size and Configuration. Environmental Science & Technology, 2017, 51, 9288-9296.	4.6	14
39	Linear solvation energy relationships (LSER) for adsorption of organic compounds by carbon nanotubes. Water Research, 2016, 98, 28-38.	5.3	51
40	Carbonaceous nano-additives augment microwave-enabled thermal remediation of soils containing petroleum hydrocarbons. Environmental Science: Nano, 2016, 3, 997-1002.	2.2	21
41	Treatment of Heavy, Long-Chain Petroleum-Hydrocarbon Impacted Soils Using Chemical Oxidation. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	24
42	Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. Science of the Total Environment, 2016, 565, 811-817.	3.9	84
43	Effect of bead milling on chemical and physical characteristics of activated carbons pulverized to superfine sizes. Water Research, 2016, 89, 161-170.	5.3	52
44	Influence of carbon nanotubes on the bioavailability of fluoranthene. Environmental Toxicology and Chemistry, 2015, 34, 658-666.	2.2	31
45	Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes. Journal of Hazardous Materials, 2015, 295, 138-144.	6.5	42
46	Adsorption of halogenated aliphatic contaminants by graphene nanomaterials. Water Research, 2015, 79, 57-67.	5.3	87
47	High porosity scintillating polymer resins for ionizing radiation sensor applications. Polymer, 2015, 56, 271-279.	1.8	19
48	Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Research, 2015, 68, 34-55.	5.3	261
49	Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes. Journal of Hazardous Materials, 2013, 261, 91-98.	6.5	56
50	Development of a 3D QSPR model for adsorption of aromatic compounds by carbon nanotubes: comparison of multiple linear regression, artificial neural network and support vector machine. RSC Advances, 2013, 3, 23924.	1.7	27
51	Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Research, 2013, 47, 1648-1654.	5.3	283
52	Predictive Model Development for Adsorption of Aromatic Contaminants by Multi-Walled Carbon Nanotubes. Environmental Science & Technology, 2013, 47, 2295-2303.	4.6	88
53	Impact of carbon nanotube morphology on phenanthrene adsorption. Environmental Toxicology and Chemistry, 2012, 31, 73-78.	2.2	47
54	The Dewaterability of Disintegrated Sludge Samples Before and After Anaerobic Digestion. Drying Technology, 2010, 28, 901-909.	1.7	27