Onur G Apul

List of Publications by Citations

Source: https://exaly.com/author-pdf/3815220/onur-g-apul-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,673 40 51 20 h-index g-index citations papers 8.4 2,070 5.4 54 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
51	Adsorption of organic contaminants by graphene nanosheets: A review. Water Research, 2017, 126, 385	-3 2 .8	251
50	Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon. <i>Water Research</i> , 2013 , 47, 1648-54	12.5	236
49	Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. <i>Water Research</i> , 2015 , 68, 34-55	12.5	222
48	Predictive model development for adsorption of aromatic contaminants by multi-walled carbon nanotubes. <i>Environmental Science & Environmental Science </i>	10.3	75
47	Nanobubble Technologies Offer Opportunities To Improve Water Treatment. <i>Accounts of Chemical Research</i> , 2019 , 52, 1196-1205	24.3	73
46	Adsorption of halogenated aliphatic contaminants by graphene nanomaterials. <i>Water Research</i> , 2015 , 79, 57-67	12.5	72
45	Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes. <i>Environmental Science & Environmental Science</i>	10.3	63
44	Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. <i>Science of the Total Environment</i> , 2016 , 565, 811-817	10.2	62
43	Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes. <i>Journal of Hazardous Materials</i> , 2013 , 261, 91-8	12.8	54
42	Impact of carbon nanotube morphology on phenanthrene adsorption. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 73-8	3.8	45
41	Effect of bead milling on chemical and physical characteristics of activated carbons pulverized to superfine sizes. <i>Water Research</i> , 2016 , 89, 161-70	12.5	40
40	Removal of poly- and per-fluoroalkyl substances from aqueous systems by nano-enabled water treatment strategies. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 198-208	4.2	36
39	Microplastic particle versus fiber generation during photo-transformation in simulated seawater. <i>Science of the Total Environment</i> , 2020 , 736, 139690	10.2	33
38	Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes. Journal of Hazardous Materials, 2015 , 295, 138-44	12.8	32
37	Linear solvation energy relationships (LSER) for adsorption of organic compounds by carbon nanotubes. <i>Water Research</i> , 2016 , 98, 28-38	12.5	32
36	Influence of carbon nanotubes on the bioavailability of fluoranthene. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 658-66	3.8	30
35	The Dewaterability of Disintegrated Sludge Samples Before and After Anaerobic Digestion. <i>Drying Technology</i> , 2010 , 28, 901-909	2.6	24

(2020-2017)

34	Removal of bromide from surface waters using silver impregnated activated carbon. <i>Water Research</i> , 2017 , 113, 223-230	12.5	23	
33	Development of a 3D QSPR model for adsorption of aromatic compounds by carbon nanotubes: comparison of multiple linear regression, artificial neural network and support vector machine. <i>RSC Advances</i> , 2013 , 3, 23924	3.7	21	
32	Critical review for microwave pretreatment of waste-activated sludge prior to anaerobic digestion. <i>Current Opinion in Environmental Science and Health</i> , 2020 , 14, 1-9	8.1	21	
31	Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter. <i>Chemosphere</i> , 2019 , 229, 515-524	8.4	20	
30	Treatment of Heavy, Long-Chain Petroleum-Hydrocarbon Impacted Soils Using Chemical Oxidation. Journal of Environmental Engineering, ASCE, 2016 , 142, 04016065	2	20	
29	Optimization of biomethane production from anaerobic Co-digestion of microalgae and septic tank sludge. <i>Biomass and Bioenergy</i> , 2019 , 127, 105266	5.3	18	
28	Superfine powdered activated carbon incorporated into electrospun polystyrene fibers preserve adsorption capacity. <i>Science of the Total Environment</i> , 2017 , 592, 458-464	10.2	16	
27	High porosity scintillating polymer resins for ionizing radiation sensor applications. <i>Polymer</i> , 2015 , 56, 271-279	3.9	16	
26	Carbonaceous nano-additives augment microwave-enabled thermal remediation of soils containing petroleum hydrocarbons. <i>Environmental Science: Nano</i> , 2016 , 3, 997-1002	7.1	15	
25	Thermal Regeneration of Spent Granular Activated Carbon Presents an Opportunity to Break the Forever PFAS Cycle. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	14	
24	Predictive models for adsorption of organic compounds by Graphene nanosheets: comparison with carbon nanotubes. <i>Science of the Total Environment</i> , 2019 , 654, 28-34	10.2	14	
23	Adsorption kinetics of synthetic organic contaminants onto superfine powdered activated carbon. <i>Chemosphere</i> , 2020 , 253, 126628	8.4	13	
22	Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration. <i>Environmental Science & Technology</i> , 2017 , 51, 9288-9296	10.3	12	
21	Removal of Bromide from Surface Water: Comparison Between Silver-Impregnated Graphene Oxide and Silver-Impregnated Powdered Activated Carbon. <i>Environmental Engineering Science</i> , 2018 , 35, 988-995	2	11	
20	The effect of metal (hydr)oxide nano-enabling on intraparticle mass transport of organic contaminants in hybrid granular activated carbon. <i>Science of the Total Environment</i> , 2017 , 586, 1219-122	2 ^{†0.2}	8	
19	Aging of microplastics increases their adsorption affinity towards organic contaminants <i>Chemosphere</i> , 2022 , 298, 134238	8.4	8	
18	The Genesis of a Critical Environmental Concern: Cannabinoids in Our Water Systems. <i>Environmental Science & Environmental Sci</i>	10.3	7	
17	Transformation potential of cannabinoids during their passage through engineered water treatment systems: A perspective. <i>Environment International</i> , 2020 , 137, 105586	12.9	5	

16	Mesoporous activated carbon shows superior adsorption affinity for 11-nor-9-carboxy- B -tetrahydrocannabinol in water. <i>Npj Clean Water</i> , 2020 , 3,	11.2	5
15	Effect of superfine pulverization of powdered activated carbon on adsorption of carbamazepine in natural source waters. <i>Science of the Total Environment</i> , 2021 , 793, 148473	10.2	5
14	Elucidating CO nanobubble interfacial reactivity and impacts on water chemistry. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 720-728	9.3	4
13	Photocatalytic activity of micron-scale brass on emerging pollutant degradation in water: mechanism elucidation and removal efficacy assessment <i>RSC Advances</i> , 2020 , 10, 39931-39942	3.7	3
12	Linear solvation energy relationship development for adsorption of synthetic organic compounds by carbon nanomaterials: an overview of the last decade. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 2949-2957	4.2	2
11	Divided Perception of Drinking Water Safety: Another Manifestation of Americal Racial Gap. <i>ACS ES&T Water</i> , 2021 , 1, 6-7		2
10	Nano-scale applications in aquaculture: Opportunities for improved production and disease control. <i>Journal of Fish Diseases</i> , 2021 , 44, 359-370	2.6	2
9	Biodegradation of petroleum hydrocarbons in a weathered, unsaturated soil is inhibited by peroxide oxidants <i>Journal of Hazardous Materials</i> , 2022 , 433, 128770	12.8	2
8	Comparing the morphologies and adsorption behavior of electrospun polystyrene composite fibers with 0D fullerenes, 1D multiwalled carbon nanotubes and 2D graphene oxides. <i>Chemical Engineering Journal Advances</i> , 2021 , 9, 100199	3.6	1
7	Effects of carbonaceous susceptors on microwave pretreatment of waste activated sludge and subsequent anaerobic digestion. <i>Bioresource Technology Reports</i> , 2021 , 13, 100641	4.1	1
6	Bromide and Other Halide Ion Removal From Drinking Waters Using Silver-Amended Coagulation. Journal - American Water Works Association, 2018, 110, 13-24	0.5	1
5	Repeatable use assessment of silicon carbide as permanent susceptor bed in ex situ microwave remediation of petroleum-impacted soils. <i>Case Studies in Chemical and Environmental Engineering</i> , 2021 , 4, 100116	7.5	1
4	Effect of air nanobubbles on oxygen transfer, oxygen uptake, and diversity of aerobic microbial consortium in activated sludge reactors <i>Bioresource Technology</i> , 2022 , 127090	11	1
3	Adsorption of organic pollutants by microplastics: Overview of a dissonant literature. <i>Journal of Hazardous Materials Advances</i> , 2022 , 6, 100091		O
2	Response to the Comment Illosing Americal Racial Gap around Drinking Water Quality Perceptions and the Role of the Environmental Engineering and Science Academic Community ACS ES&T Water, 2021, 1, 461-461		
1	Symbiotic Engineering: A Novel Approach for Environmental Remediation. <i>ACS ES&T Engineering</i> , 2022 , 2, 606-616		