
Yongshun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3815147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Variable-Diameter Capsule Robot Based on Multiple Wedge Effects. IEEE/ASME Transactions on Mechatronics, 2011, 16, 241-254.	5.8	53
2	Design Optimization of a Bidirectional Microswimming Robot Using Giant Magnetostrictive Thin Films. IEEE/ASME Transactions on Mechatronics, 2009, 14, 493-503.	5.8	24
3	Control theorem of a universal uniform-rotating magnetic vector for capsule robot in curved environment. Science China Technological Sciences, 2013, 56, 359-368.	4.0	20
4	Design, analysis and experiments of a spatial universal rotating magnetic field system for capsule robot. , 2012, , .		16
5	Magnitude and Orientation Error Correction of a Superimposed Spatial Universal Rotating Magnetic Vector. IEEE Transactions on Magnetics, 2016, 52, 1-9.	2.1	15
6	Critical Coupling Magnetic Moment of a Petal-Shaped Capsule Robot. IEEE Transactions on Magnetics, 2016, 52, 1-9.	2.1	13
7	Characteristics of Magnetic Torque of a Capsule Micro Robot Applied in Intestine. IEEE Transactions on Magnetics, 2009, 45, 2128-2135.	2.1	12
8	Dynamic characteristics of an intestine capsule robot with variable diameter. Science Bulletin, 2010, 55, 1813-1821.	1.7	12
9	Orthogonal transformation operation theorem of a spatial universal uniform rotating magnetic field and its application in capsule endoscopy. Science China Technological Sciences, 2017, 60, 854-864.	4.0	10
10	Polynomial profile optimization method of a magnetic petal-shaped capsule robot. Mechatronics, 2020, 65, 102309.	3.3	9
11	Control strategy for multiple capsule robots in intestine. Science China Technological Sciences, 2011, 54, 3098-3108.	4.0	8
12	Self-centering characteristics of a petal-shaped capsule robot. Science China Technological Sciences, 2019, 62, 619-627.	4.0	7
13	Kinematics Characteristics of a New Capsule-type Micro Robot in Intestine. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2009, 45, 18.	0.5	7
14	Following-up Steering Dynamic Model of an Intestinal Capsule Robot. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2012, 48, 84.	0.5	6
15	Characteristics of spatial magnetic torque of an intestine capsule micro robot with a variable diameter. Science in China Series D: Earth Sciences, 2009, 52, 2079-2086.	0.9	5
16	Posture Dynamic Modeling and Stability Analysis of a Magnetic Driven Dual-Spin Spherical Capsule Robot. Micromachines, 2021, 12, 238.	2.9	5
17	Trafficability Characteristic and Magnetic Vector Control of a Capsule Robot in Bending Environment. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2014, 50, 26.	0.5	5
18	Polarization Criteria Detection of a Generalized Spatial Universal Rotating Magnetic Vector. IEEE Transactions on Magnetics, 2018, 54, 1-8.	2.1	4

#	Article	IF	CITATIONS
19	Petal-shaped Capsule Robot with High Performance. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2017, 53, 9.	0.5	3
20	Design and implementation of a highly integrated dual hemisphere capsule robot. Biomedical Microdevices, 2022, 24, 10.	2.8	3
21	Geometrical nonlinear deformation model and its experimental study on bimorph giant magnetostrictive thin film. Frontiers of Mechanical Engineering in China, 2008, 3, 313-317.	0.4	1
22	Dynamic Characteristics Analysis of A Magnetically Driven Dual Hemisphere Capsule Robot by Eccentric Gravity Center. , 2020, , .		0