Peter J Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3815107/publications.pdf

Version: 2024-02-01

28 papers

14,708 citations

430754 18 h-index 501076 28 g-index

34 all docs

34 docs citations

times ranked

34

20792 citing authors

#	Article	IF	CITATIONS
1	Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459, 262-265.	13.7	5,339
2	Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007, 449, 1003-1007.	13.7	4,753
3	SARS-CoV-2 productively infects human gut enterocytes. Science, 2020, 369, 50-54.	6.0	1,347
4	M. tuberculosis and M. leprae Translocate from the Phagolysosome to the Cytosol in Myeloid Cells. Cell, 2007, 129, 1287-1298.	13.5	861
5	Longâ€ŧerm expanding human airway organoids for disease modeling. EMBO Journal, 2019, 38, .	3.5	619
6	ESXâ€1â€mediated translocation to the cytosol controls virulence of mycobacteria. Cellular Microbiology, 2012, 14, 1287-1298.	1.1	375
7	Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nature Microbiology, 2018, 3, 814-823.	5.9	296
8	Direct Visualization by Cryo-EM of the Mycobacterial Capsular Layer: A Labile Structure Containing ESX-1-Secreted Proteins. PLoS Pathogens, 2010, 6, e1000794.	2.1	252
9	An organoidâ€derived bronchioalveolar model for SARSâ€CoVâ€2 infection of human alveolar type IIâ€like cells. EMBO Journal, 2021, 40, e105912.	3.5	153
10	Mycobacterial Secretion Systems ESX-1 and ESX-5 Play Distinct Roles in Host Cell Death and Inflammasome Activation. Journal of Immunology, 2011, 187, 4744-4753.	0.4	122
11	Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels. Development (Cambridge), 2017, 144, 1107-1112.	1.2	98
12	Cryo-EM structures from sub-nl volumes using pin-printing and jet vitrification. Nature Communications, 2020, 11, 2563.	5.8	85
13	Understanding the invisible hands of sample preparation for cryo-EM. Nature Methods, 2021, 18, 463-471.	9.0	62
14	Humans in a Dish: The Potential of Organoids in Modeling Immunity and Infectious Diseases. Frontiers in Microbiology, 2017, 8, 2402.	1.5	42
15	Exploring vitreous cryo-section-induced compression at the macromolecular level using electron cryo-tomography; 80S yeast ribosomes appear unaffected. Journal of Structural Biology, 2011, 173, 345-349.	1.3	37
16	Mycobacteria–host interactions in human bronchiolar airway organoids. Molecular Microbiology, 2022, 117, 682-692.	1.2	32
17	In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed. Angiogenesis, 2022, 25, 455-470.	3.7	31
18	Structure of the Yersinia injectisome in intracellular host cell phagosomes revealed by cryo FIB electron tomography. Journal of Structural Biology, 2021, 213, 107701.	1.3	28

#	Article	IF	CITATIONS
19	Quantifying resolution limiting factors in subtomogram averaged cryo-electron tomography using simulations. Journal of Structural Biology, 2014, 187, 103-111.	1.3	19
20	Sub-pixel electron detection using a convolutional neural network. Ultramicroscopy, 2020, 218, 113091.	0.8	19
21	Priming mycobacterial ESX-secreted protein B to form a channel-like structure. Current Research in Structural Biology, 2021, 3, 153-164.	1.1	15
22	SARS-CoV-2–Specific Vaccine Candidates; the Contribution of Structural Vaccinology. Vaccines, 2022, 10, 236.	2.1	14
23	Could Egg White Lysozyme be Solved by Single Particle Cryo-EM?. Journal of Chemical Information and Modeling, 2020, 60, 2605-2613.	2.5	11
24	Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology. PLoS Pathogens, 2021, 17, e1009927.	2.1	10
25	Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM. Journal of Membrane Biology, 2021, 254, 321-341.	1.0	6
26	<i>Mycobacterium tuberculosis</i> ferritin: a suitable workhorse protein for cryo-EM development. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1077-1083.	1.1	6
27	Endocytosed nanogold fiducials for improved in-situ cryo–electron tomography tilt-series alignment. Journal of Structural Biology, 2021, 213, 107698.	1.3	5
28	Single-particle cryo-EM: alternative schemes to improve dose efficiency. Journal of Synchrotron Radiation, 2021, 28, 1343-1356.	1.0	5