Adrian Carballal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3814695/publications.pdf

Version: 2024-02-01

1040056 713466 30 498 9 21 citations h-index g-index papers 33 33 33 236 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Validation of an Aesthetic Assessment System for Commercial Tasks. Entropy, 2022, 24, 103.	2.2	5
2	State of the Art on Artificial Intelligence in Land Use Simulation. Complexity, 2022, 2022, 1-19.	1.6	4
3	A review on machine learning approaches and trends in drug discovery. Computational and Structural Biotechnology Journal, 2021, 19, 4538-4558.	4.1	168
4	Artificial intelligence applied to conceptual design. A review of its use in architecture. Automation in Construction, 2021, 124, 103550.	9.8	50
5	Artificial Neural Networks and Deep Learning in the Visual Arts: a review. Neural Computing and Applications, 2021, 33, 121-157.	5.6	49
6	Minimal neural network topology optimization for aesthetic classification. Neural Computing and Applications, 2021, 33, 107-119.	5.6	5
7	Transfer learning features for predicting aesthetics through a novel hybrid machine learning method. Neural Computing and Applications, 2020, 32, 5889-5900.	5.6	10
8	Digital Image Quality Prediction System. Proceedings (mdpi), 2020, 54, 15.	0.2	1
9	A Genetic Programming-Based Low-Level Instructions Robot for Realtimebattle. Entropy, 2020, 22, 1362.	2.2	2
10	Comparison of Outlier-Tolerant Models for Measuring Visual Complexity. Entropy, 2020, 22, 488.	2.2	6
11	A pointâ€based redesign algorithm for designing geometrically complex surfaces. A case study: Miralles's croissant paradox. IET Image Processing, 2020, 14, 2948-2956.	2.5	2
12	Avoiding the Inherent Limitations in Datasets Used for Measuring Aesthetics When Using a Machine Learning Approach. Complexity, 2019, 2019, 1-12.	1.6	7
13	Approach to Minimize Bias on Aesthetic Image Datasets. Advances in Multimedia and Interactive Technologies Book Series, 2019, , 203-219.	0.2	1
14	Visual complexity modelling based on image features fusion of multiple kernels. PeerJ, 2019, 7, e7075.	2.0	14
15	Machine Learning in Biomedical Informatics. , 2019, , 389-399.		0
16	Aesthetic Composition Indicator Based on Image Complexity. Advances in Multimedia and Interactive Technologies Book Series, 2019, , 185-202.	0.2	1
17	Distinguishing paintings from photographs by complexity estimates. Neural Computing and Applications, 2018, 30, 1957-1969.	5.6	14
18	Predicting Vertical Urban Growth Using Genetic Evolutionary Algorithms in Tokyo's Minato Ward. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, .	1.7	10

#	Article	IF	Citations
19	Assisted surface redesign by perturbing its point cloud representation. IET Software, 2018, 12, 251-257.	2.1	1
20	Automatic multiscale vascular image segmentation algorithm for coronary angiography. Biomedical Signal Processing and Control, 2018, 46, 1-9.	5.7	17
21	Computerized measures of visual complexity. Acta Psychologica, 2015, 160, 43-57.	1.5	77
22	A Complexity Approach for Identifying Aesthetic Composite Landscapes. Lecture Notes in Computer Science, 2014, , 50-61.	1.3	1
23	Detecting Bias on Aesthetic Image Datasets. International Journal of Creative Interfaces and Computer Graphics, 2014, 5, 62-74.	0.1	3
24	Guest editorial: special issue on biologically inspired music, sound, art and design. Genetic Programming and Evolvable Machines, 2013, 14, 281-286.	2.2	5
25	Feature Selection and Novelty in Computational Aesthetics. Lecture Notes in Computer Science, 2013, , 133-144.	1.3	3
26	Evolutionary and Biologically Inspired Music, Sound, Art and Design. Lecture Notes in Computer Science, 2012, , .	1.3	2
27	Using complexity estimates in aesthetic image classification. Journal of Mathematics and the Arts, 2012, 6, 125-136.	0.2	21
28	Self-tuning of disk input–output in operating systems. Journal of Systems and Software, 2012, 85, 77-86.	4.5	0
29	Framework of fully integrated hybrid systems. Neural Computing and Applications, 2012, 21, 45-53.	5.6	0
30	Computing Aesthetics with Image Judgement Systems. , 2012, , 295-322.		7