List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3814472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stick-slip behavior of a clayey crustal fault. Physical Review Research, 2022, 4, .	3.6	2
2	Rheological properties of halloysite soil slurry: a case study of weathered tephra involved in a shallow landslide triggered by the 2018 Eastern Iburi earthquake in Hokkaido, Japan. Earth, Planets and Space, 2022, 74, .	2.5	3
3	Rheological properties of concentrated allophane, halloysite, and kaolinite suspensions. Applied Clay Science, 2022, 226, 106557.	5.2	2
4	1-D inversion analysis of a shallow landslide triggered by the 2018 Eastern Iburi earthquake in Hokkaido, Japan. Earth, Planets and Space, 2021, 73, .	2.5	4
5	Mineralogical and physico-chemical properties of halloysite-bearing slip surface material from a landslide during the 2018 Eastern Iburi earthquake, Hokkaido. Progress in Earth and Planetary Science, 2021, 8, .	3.0	8
6	Influence of biopolymers on the rheological properties of seafloor sediments and the runout behavior of submarine debris flows. Scientific Reports, 2021, 11, 1493.	3.3	7
7	Generation of sintered fault rock and its implications for earthquake energetics and fault healing. Communications Earth & Environment, 2020, 1, .	6.8	6
8	Cohesional Slip on a Plate Subduction Boundary During a Large Earthquake. Geophysical Research Letters, 2020, 47, e2020GL088395.	4.0	4
9	Fluidized landslides triggered by the liquefaction of subsurface volcanic deposits during the 2018 Iburi–Tobu earthquake, Hokkaido. Scientific Reports, 2019, 9, 13119.	3.3	33
10	Fault weakening caused by smectite swelling. Earth, Planets and Space, 2019, 71, .	2.5	10
11	Threeâ€dimensional texture of natural pseudotachylyte: Pseudotachylyte formation mechanism in hydrous accretionary complex. Island Arc, 2018, 27, e12241.	1.1	0
12	Dehydroxylation Kinetics of Clay Minerals and Its Application to Friction Heating Along an Imbricate Thrust in an Accretionary Prism. Geochemistry, Geophysics, Geosystems, 2018, 19, 2991-3003.	2.5	10
13	Rheological properties of composite serpentine-brucite suspensions: Implications for mudflow behavior on forearc seamounts. Marine Geology, 2018, 403, 191-196.	2.1	9
14	Acoustic properties of deformed rocks in the <scp>N</scp> obeoka thrust, in the <scp>S</scp> himanto <scp>B</scp> elt, <scp>K</scp> yushu, <scp>S</scp> outhwest <scp>J</scp> apan. Island Arc, 2017, 26, e12198.	1.1	1
15	Temporal stress variations along a seismogenic megasplay fault in the subduction zone: <scp>A</scp> n example from the <scp>N</scp> obeoka <scp>T</scp> hrust, southwestern <scp>J</scp> apan. Island Arc, 2017, 26, e12193.	1.1	5
16	Alteration and dehydration of subducting oceanic crust within subduction zones: implications for décollement step-down and plate-boundary seismogenesis. Earth, Planets and Space, 2017, 69, .	2.5	14
17	Opalâ€CT in chert beneath the toe of the Tohoku margin and its influence on the seismic aseismic transition in subduction zones. Geophysical Research Letters, 2017, 44, 687-693.	4.0	2
18	Sensitivity of Clay Suspension Rheological Properties to pH, Temperature, Salinity, and Smectiteâ€Quartz Ratio. Geophysical Research Letters, 2017, 44, 9615-9621.	4.0	18

#	Article	IF	CITATIONS
19	Exchangeable cation composition of the smectiteâ€rich plate boundary fault at the Japan Trench. Geophysical Research Letters, 2016, 43, 3112-3119.	4.0	7
20	Source and sink of fluid in pelagic siliceous sediments along a cold subduction plate boundary. Tectonophysics, 2016, 686, 146-157.	2.2	2
21	Hydrogeological responses to incoming materials at the erosional subduction margin, offshore <scp>O</scp> sa <scp>P</scp> eninsula, <scp>C</scp> osta <scp>R</scp> ica. Geochemistry, Geophysics, Geosystems, 2015, 16, 2725-2742.	2.5	11
22	Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake. Earth and Planetary Science Letters, 2015, 412, 35-41.	4.4	68
23	Pelagic smectite as an important factor in tsunamigenic slip along the Japan Trench. Geology, 2015, 43, 155-158.	4.4	65
24	Multiple damage zone structure of an exhumed seismogenic megasplay fault in a subduction zone - a study from the Nobeoka Thrust Drilling Project. Earth, Planets and Space, 2015, 67, .	2.5	15
25	Estimation of slip rate and fault displacement during shallow earthquake rupture in the Nankai subduction zone. Earth, Planets and Space, 2015, 67, .	2.5	15
26	Structure and lithology of the Japan Trench subduction plate boundary fault. Tectonics, 2015, 34, 53-69.	2.8	53
27	Frictional properties of sediments entering the Costa Rica subduction zone offshore the Osa Peninsula: implications for fault slip in shallow subduction zones. Earth, Planets and Space, 2014, 66, 72.	2.5	12
28	Changes in illite crystallinity within an ancient tectonic boundary thrust caused by thermal, mechanical, and hydrothermal effects: an example from the Nobeoka Thrust, southwest Japan. Earth, Planets and Space, 2014, 66, 116.	2.5	25
29	Quartz deposition and its influence on the deformation process of megathrusts in subduction zones. Earth, Planets and Space, 2014, 66, .	2.5	7
30	The influence of organic–rich shear zones on pelagic sediment deformation and seismogenesis in a subduction zone. Journal of Mineralogical and Petrological Sciences, 2014, 109, 228-238.	0.9	2
31	Structure and Composition of the Plate-Boundary Slip Zone for the 2011 Tohoku-Oki Earthquake. Science, 2013, 342, 1208-1211.	12.6	226
32	Low Coseismic Shear Stress on the Tohoku-Oki Megathrust Determined from Laboratory Experiments. Science, 2013, 342, 1211-1214.	12.6	220
33	Progress of illitization along an imbricate frontal thrust at shallow depths in an accretionary prism. Tectonophysics, 2013, 600, 41-51.	2.2	9
34	Hanging wall deformation of a seismogenic megasplay fault in an accretionary prism: The Nobeoka Thrust in southwestern Japan. Journal of Structural Geology, 2013, 52, 136-147.	2.3	25
35	Contrasts in physical properties between the hanging wall and footwall of an exhumed seismogenic megasplay fault in a subduction zone—An example from the Nobeoka Thrust Drilling Project. Geochemistry, Geophysics, Geosystems, 2013, 14, 5354-5370.	2.5	22
36	Importance of mechanochemical effects on fault slip behavior during earthquakes. Geophysical Research Letters, 2013, 40, 2988-2992.	4.0	24

#	Article	IF	CITATIONS
37	Tectonic mélange as fault rock of subduction plate boundary. Tectonophysics, 2012, 568-569, 25-38.	2.2	97
38	Silica diagenesis and its effect on interplate seismicity in cold subduction zones. Earth and Planetary Science Letters, 2012, 317-318, 136-144.	4.4	22
39	Runaway slip to the trench due to rupture of highly pressurized megathrust beneath the middle trench slope: The tsunamigenesis of the 2011 Tohoku earthquake off the east coast of northern Japan. Earth and Planetary Science Letters, 2012, 339-340, 32-45.	4.4	81
40	A new source of water in seismogenic subduction zones. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	34
41	Smectite to chlorite conversion by frictional heating along a subduction thrust. Earth and Planetary Science Letters, 2011, 305, 161-170.	4.4	41
42	Low-grade metamorphism around the down-dip limit of seismogenic subduction zones: Example from an ancient accretionary complex in the Shimanto Belt, Japan. Tectonophysics, 2011, 502, 383-392.	2.2	16
43	Reproduction of thermal pressurization and fluidization of clay-rich fault gouges by high-velocity friction experiments and implications for seismic slip in natural faults. Geological Society Special Publication, 2011, 359, 267-285.	1.3	29
44	Smectite swelling in the Miura–Boso accretionary prism: Possible cause for incipient décollement zone formation. Tectonophysics, 2010, 494, 75-84.	2.2	8
45	Modification to the crystal structure of chlorite during early stages of its dissolution. Physics and Chemistry of Minerals, 2009, 36, 537-544.	0.8	15
46	Stacking faults with 180° layer rotation in celadonite, an Fe- and Mg-rich dioctahedral mica. Clays and Clay Minerals, 2008, 56, 612-621.	1.3	13
47	Polytype and morphological analyses of gümbelite, a fibrous Mg-rich illite. Clays and Clay Minerals, 2007, 55, 453-466.	1.3	5
48	XRD and HRTEM analyses of stacking structures in sudoite, di-trioctahedral chlorite. American Mineralogist, 2007, 92, 1586-1592.	1.9	13
49	Novel 2:1 structure of phyllosilicates formed by annealing Fe3+, Mg-rich dioctahedral mica. American Mineralogist, 2007, 92, 1531-1534.	1.9	3
50	Morphological analyses of minute crystals by using stereo-photogrammetric scanning electron microscopy and electron back-scattered diffraction. Journal of Microscopy, 2007, 228, 358-365.	1.8	5
51	Stacking structures in pyrophyllite revealed by high-resolution transmission electron microscopy (HRTEM). American Mineralogist, 2006, 91, 1293-1299.	1.9	40
52	Stacking structure in disordered talc: Interpretation of its X-ray diffraction pattern by using pattern simulation and high-resolution transmission electron microscopy. American Mineralogist, 2006, 91, 1363-1370.	1.9	30
53	Dissolution of brucite on the (001) surface at neutral pH: <i>in situ</i> atomic force microscopy observations. Clays and Clay Minerals, 2006, 54, 598-604.	1.3	8
54	Morphological characteristics of ordered kaolinite: Investigation using electron back-scattered diffraction. American Mineralogist, 2005, 90, 1462-1465.	1.9	26

#	Article	IF	CITATIONS
55	H2 generation during dry grinding of kaolinite. Journal of Colloid and Interface Science, 2004, 275, 225-228.	9.4	24
56	H 2 generation in wet grinding of granite and singleâ€crystal powders and implications for H 2 concentration on active faults. Geophysical Research Letters, 2003, 30, .	4.0	29
57	Occurrences of Pseudotachylyte obtained from the Nojima fault at Nojima-Hirabayashi, Awaji Island, Japan. Journal of the Geological Society of Japan, 2002, 108, IX-X.	0.6	2