List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3814003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protocol to study cell death using TUNEL assay in Drosophila imaginal discs. STAR Protocols, 2022, 3, 101140.	1.2	12
2	Hippo signaling: bridging the gap between cancer and neurodegenerative disorders. Neural Regeneration Research, 2021, 16, 643.	3.0	18
3	Yorkie-Cactus (ll̂ºBα)-JNK axis promotes tumor growth and progression in Drosophila. Oncogene, 2021, 40, 4124-4136.	5.9	3
4	Identification of COVID-19 prognostic markers and therapeutic targets through meta-analysis and validation of Omics data from nasopharyngeal samples. EBioMedicine, 2021, 70, 103525.	6.1	27
5	Unbiased automated quantitation of ROS signals in live retinal neurons of <i>Drosophila</i> using Fiji/ImageJ. BioTechniques, 2021, 71, 416-424.	1.8	10
6	Newt regeneration genes regulate Wingless signaling to restore patterning in Drosophila eye. IScience, 2021, 24, 103166.	4.1	9
7	A Twoâ€Clone approach to study signaling interactions among neuronal cells in a preâ€clinical Alzheimer's Disease model. Alzheimer's and Dementia, 2021, 17, e058690.	0.8	0
8	Motif 1ÂBinding Protein suppresses wingless to promote eye fate in Drosophila. Scientific Reports, 2020, 10, 17221.	3.3	8
9	AnE3ubiquitin ligase,cullinâ€4regulates retinal differentiation inDrosophilaeye. Genesis, 2020, 58, e23395.	1.6	3
10	A Two-Clone Approach to Study Signaling Interactions among Neuronal Cells in a Pre-clinical Alzheimer's Disease Model. IScience, 2020, 23, 101823.	4.1	8
11	Inactivation of Hippo and cJun-N-terminal Kinase (JNK) signaling mitigate FUS mediated neurodegeneration in vivo. Neurobiology of Disease, 2020, 140, 104837.	4.4	32
12	A Positive Feedback Loop of Hippo- and c-Jun-Amino-Terminal Kinase Signaling Pathways Regulates Amyloid-Beta-Mediated Neurodegeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 117.	3.7	39
13	Generation of Third Dimension: Axial Patterning in the Developing Drosophila Eye. , 2020, , 53-95.		7
14	Comparative transcriptomic analysis and structure prediction of novel Newt proteins. PLoS ONE, 2019, 14, e0220416.	2.5	13
15	Hippo Signaling in Cancer: Lessons From Drosophila Models. Frontiers in Cell and Developmental Biology, 2019, 7, 85.	3.7	58
16	Proximal fate marker homothorax marks the lateral extension of stalkâ€eyed fly Cyrtodopsis whitei. Genesis, 2019, 57, e23309.	1.6	11
17	Insights into regeneration tool box: An animal model approach. Developmental Biology, 2019, 453, 111-129.	2.0	39
18	Cover Image, Volume 57, Issue 9. Genesis, 2019, 57, e23338.	1.6	0

#	Article	IF	CITATIONS
19	Unraveling Alzheimer's Disease Using Drosophila. , 2019, , 251-277.		10
20	Exploring the efficacy of natural products in alleviating Alzheimer's disease. Neural Regeneration Research, 2019, 14, 1321.	3.0	66
21	A soy protein Lunasin can ameliorate amyloid-beta 42 mediated neurodegeneration in Drosophila eye. Scientific Reports, 2018, 8, 13545.	3.3	37
22	Characterization of a morphogenetic furrow specific Gal4 driver in the developing Drosophila eye. PLoS ONE, 2018, 13, e0196365.	2.5	13
23	Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye. Cell Death and Disease, 2016, 7, e2566-e2566.	6.3	18
24	Alzheimer′s disease: the silver tsunami of the 21 st century. Neural Regeneration Research, 2016, 11, 693.	3.0	46
25	Cell Type-Specific Responses to Wingless, Hedgehog and Decapentaplegic Are Essential for Patterning Early Eye-Antenna Disc in Drosophila. PLoS ONE, 2015, 10, e0121999.	2.5	13
26	The Hippo pathway effector Yki downregulates Wg signaling to promote retinal differentiation in the <i>Drosophila</i> eye. Development (Cambridge), 2015, 142, 2002-2013.	2.5	32
27	Drosophila C-terminal Src kinase regulates growth via the Hippo signaling pathway. Developmental Biology, 2015, 397, 67-76.	2.0	16
28	Drosophila Eye Model to Study Neuroprotective Role of CREB Binding Protein (CBP) in Alzheimer's Disease. PLoS ONE, 2015, 10, e0137691.	2.5	47
29	The Hippo pathway effector Yki downregulates Wg signaling to promote retinal differentiation in the Drosophila eye. Journal of Cell Science, 2015, 128, e1206-e1206.	2.0	Ο
30	A vertex specific dorsal selector Dve represses the ventral appendage identity in Drosophila head. Mechanisms of Development, 2014, 133, 54-63.	1.7	4
31	Domain specific genetic mosaic system in the <i>Drosophila</i> eye. Genesis, 2013, 51, 68-74.	1.6	18
32	Novel Neuroprotective Function of Apical-Basal Polarity Gene Crumbs in Amyloid Beta 42 (Aβ42) Mediated Neurodegeneration. PLoS ONE, 2013, 8, e78717.	2.5	26
33	Molecular Genetic Mechanisms of Axial Patterning: Mechanistic Insights into Generation of Axes in the Developing Eye. , 2013, , 37-73.		17
34	Homeotic Gene teashirt (tsh) Has a Neuroprotective Function in Amyloid-Beta 42 Mediated Neurodegeneration. PLoS ONE, 2013, 8, e80829.	2.5	21
35	Annual Drosophila Research Conference, 2012. Developmental Dynamics, 2012, 241, 1227-1236.	1.8	0
36	A glimpse into dorsoâ€ventral patterning of the <i>Drosophila</i> eye. Developmental Dynamics, 2012, 241, 69-84.	1.8	41

#	Article	IF	CITATIONS
37	<i>Drosophila</i> as a model for understanding development and disease. Developmental Dynamics, 2012, 241, 1-2.	1.8	49
38	Neurodegeneration, a means to an end. Journal of Cell Science & Therapy, 2012, 03, .	0.3	14
39	Opposing interactions between homothorax and Lobe define the ventral eye margin of Drosophila eye. Developmental Biology, 2011, 359, 199-208.	2.0	18
40	Annual Drosophila Research Conference, 2011. Developmental Dynamics, 2011, 240, 2042-2050.	1.8	0
41	Activation of JNK Signaling Mediates Amyloid-ß-Dependent Cell Death. PLoS ONE, 2011, 6, e24361.	2.5	75
42	Shop talk: Annual Drosophila Research Conference, 2010. Developmental Dynamics, 2010, 239, 3124-3129.	1.8	0
43	Focus on Molecules: Six3 – Master or Apprentice?. Experimental Eye Research, 2010, 90, 535-536.	2.6	6
44	Dorsal eye selector pannier (pnr) suppresses the eye fate to define dorsal margin of the Drosophila eye. Developmental Biology, 2010, 346, 258-271.	2.0	26
45	Regulation of organ size: Insights from the <i>Drosophila</i> Hippo signaling pathway. Developmental Dynamics, 2009, 238, 1627-1637.	1.8	89
46	Drosophila TRAP230/240 are essential coactivators for Atonal in retinal neurogenesis. Developmental Biology, 2007, 308, 322-330.	2.0	22
47	Larval legs of mulberry silkwormBombyx mori are prototypes for the adult legs. Genesis, 2007, 45, 169-176.	1.6	19
48	Lobe and Serrate are required for cell survival during early eye development in Drosophila. Development (Cambridge), 2006, 133, 4771-4781.	2.5	53
49	Dorsoventral boundary for organizing growth and planar polarity in the Drosophila eye. Advances in Developmental Biology (Amsterdam, Netherlands), 2005, , 59-90.	0.4	17
50	Genetic Interaction of Lobe With Its Modifiers in Dorsoventral Patterning and Growth of the Drosophila Eye. Genetics, 2005, 171, 169-183.	2.9	32
51	Dorso-ventral asymmetric functions of teashirt in Drosophila eye development depend on spatial cues provided by early DV patterning genes. Mechanisms of Development, 2004, 121, 365-370.	1.7	33
52	Eyeless collaborates with hedgehog and decapentaplegic signaling in drosophila eye induction. Developmental Biology, 2003, 256, 49-61.	2.0	49
53	Initial state of theDrosophilaeye before dorsoventral specification is equivalent to ventral. Development (Cambridge), 2003, 130, 6351-6360.	2.5	57
54	Eye suppression, a novel function of <i>teashirt</i> , requires Wingless signaling. Development (Cambridge), 2002, 129, 4271-4280.	2.5	69

#	Article	IF	CITATIONS
55	Eye suppression, a novel function of teashirt, requires Wingless signaling. Development (Cambridge), 2002, 129, 4271-80.	2.5	48
56	The wings ofBombyx mori develop from larval discs exhibiting an early differentiated state: a preliminary report. Journal of Biosciences, 2001, 26, 167-177.	1.1	22
57	Developmental Aspects of Mulberry and Nonmulberry Silkworm Species: A comparative study. , 1998, , 65-97.		3
58	Search for Drosophila genes based on patterned expression of mini-white reporter gene of a P lacW vector in adult eyes. Roux's Archives of Developmental Biology, 1995, 205, 114-121.	1.2	10
59	Novel Newt Regeneration Genes Regulate Wingless Signaling to Restore Patterning in <i>Drosophila</i> Eye. SSRN Electronic Journal, 0, , .	0.4	0